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Preface

This book contains the papers presented at the Eighth Annual IFIP TC-6
TC-11 Conference on Communications and Multimedia Security, held in Win-
dermere, The Lake District, UK, on 15-18 September 2004. This was a work-
ing conference that facilitated lively debate and discussions between the par-
ticipants and presenters. Thirty three papers were submitted with one being
withdrawn prior to review. The reviews were conducted by an international
program committee with acknowledged expertise in communications and mul-
timedia security, many being well known authors of books, papers and Internet
RFCs. They were aided by a small group of external volunteer reviewers. As a
result, eighteen papers were shortlisted and fifteen were presented. In addition,
there was a keynote speech and a Panel Session.

The keynote speech was given by Karl-Heinz Brandenburg, the inventor of
MP3, who talked about issues in Digital Rights Management.

The Panel Session addressed security in the Microsoft .Net architecture, and
the threats that builders of web services applications need to be aware of. The
Panel Session consisted of six short papers followed by a question and answer
session. The papers were a result of research sponsored by Microsoft at five
European University research centres, and the authors presented the results of
their findings. This session provoked a very lively discussion.

Holding a successful working conference requires the hard work of many.
The conference was organised by a group of staff and research students from
the University of Salford. The editors would like to thank the authors for their
submitted papers, the program committee and external reviewers for their con-
scientious efforts during the review process, the organising committee for their
tireless efforts to ensure the smooth running of the conference, and the Beech
Hill Hotel, Windermere, for their helpful service in providing the conference
facilities and the wonderful food which was some of the most delicious we
have tasted at a conference.



Conference Program Committee

Program Chair

David Chadwick, University of Salford

Program Committee

Jean Bacon, University of Cambridge, UK

Steve Bellovin, AT&T Research, USA

Elisa Bertino, CERIAS, Purdue University, USA

Howard Chivers, University of York, UK

Stephen Farrell, Trinity College Dublin, Ireland

Russ Housley, Vigil Security, USA

Stephen Kent, BBN Technologies, USA

Herbert Leitold, TU Graz, Austria

Javier Lopez, University of Malaga, Spain

Chris Mitchell, Royal Holloway, University of London, UK
Ken Moody, University of Cambridge, UK

Sead Muftic, Stockholm University, Sweden

Sassa Otenko, University of Salford, UK

Ginther Pernul, University of Regensburg. Germany

Bart Preneel, Katholieke Universiteit Leuven, Belgium
Sihan Qing, Chinese Academy of Sciences, China
Pierangela Samarati, University of Milan, Italy

Wolfgang Schneider, Fraunhofer SIT, Germany

Frank Siebenlist, Argonne National Laboratory, USA

Leon Strous, Chairman of TC11, De Nederlandsche Bank, Netherlands
Mary Thompson, Lawrence Berkeley Laboratory, USA
Von Welch, National Center for Supercomputing Applications, USA



xii CONFERENCE ON COMMUNICATIONS AND MULTIMEDIA SECURITY

External Reviewers

Ji Qingguang

Linying Su

Torsten Priebe

Bjoern Muschall
Christian Schlaeger
Alex Biryukov
Christope De Canniére



Conference Organising Committee

Organising Committee Chair

Grahame Cooper, University of Salford, UK

Organising Committee

Donna Bailey
David Chadwick
Carlos Delgado
Helen Hayes
Peter Langley
John Larmouth
Joanne Perrot
Janice Whatley
Gansen Zhao



DUO-ONIONS AND HYDRA-ONIONS -
FAILURE AND ADVERSARY RESISTANT
ONION PROTOCOLS *

Jan Iwanik, Marek Klonowski, and Mirostaw Kutylowski
iwanik@im.pwr.wroc.pl, kionowsk@im.pwr.wroc.pl, Miroslaw.Kutylowski@pwr.wroc.p!

Institute of Mathematics, Wroctaw Univ. of Technology, ul. Wybrzeze Wyspiariskiego
27, 50-370 Wroctaw, Poland

Abstract A serious weakness of the onion protocol, one of the major tools for anonymous
communication, is its vulnerability to network failures and/or an adversary try-
ing to break the communication. This is facilitated by the fact that each message
is sent through a path of a certain length and a failure in a single point of this path
prohibits message delivery. Since the path cannot be too short in order to offer
anonymity protection (at least logarithmic in the number of nodes), the failure
probability might be quite substantial.

The simplest solution to this problem would be to send many onions with
the same message. We show that this approach can be optimized with respect to
communication overhead and resilience to failures and/or adversary attacks. We
propose two protocols: the first one mimics K independent onions with a single
onion. The second protocol is designed for the case where an adaptive adversary
may destroy communication going out of servers chosen according to the traffic
observed by him. In this case a single message flows in a stream of K onions
- the main point is that even when the adversary kills some of these onions, the
stream quickly recovers to the original bandwidth — again K onions with this
message would flow through the network.

Keywords:  Anonymity, onion protocol, adaptive adversary

1. Introduction

Protocols for anonymous communication in computer networks attracted a
lot of interest. Their importance increases together with growth of the threats
in public networks. Many solutions were proposed, such as Chaum’s DC-Nets
(Chaum, 1988) and many variations of MIXes (Chaum, 1981). DC-nets pro-

*Partially supported by KBN scientific project 2003-2005 — grant number 0 TOOA 003 23
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vide information-theoretic security, but computational overhead is very high.
For this reason, this solution is not regarded as practical for large scale appli-
cations. The second major proposal are Onions described in (Rackoff, 1993)
for the very first time. In fact, it is based on idea of MIXes introduced in
(Chaum, 1981). Anonymous communication based on onions is scalable and
in certain scenarios meets very high demands on privacy (in other scenarios it
provides essentially no protection). In order to provide anonymity, a message
is sent not directly from the source to the destination, but through a path of
randomly chosen nodes, where each node recodes the message with cryptogra-
phic tools, so that one cannot see any relationship between different versions of
the same message. This protocol has many possible variants, see for instance
(Freedman, 2002). Onions are the crucial component of Onion Routing (see
for instance (Syverson, 1998) as a starting reference point).

1.1 Provable Security of Onion Routing

In certain scenarios one can really prove that onion protocol is secure, even
if the adversary traces all traffic. The first rigid mathematical analysis was
provided in (Rackoff, 1993). However, the authors assume that a large number
of onions are sent at the same time and that the choice of intermediate nodes
is somewhat restricted. The result, very interesting from theoretical point of
view, is not sufficient for practical applications — security is guaranteed only
for the onion paths which have a length that is polylogarithmic in the number
n of servers (with a two-digit exponent). The last problem can be avoided by
using another estimation (Czumaj, 1999) — the path length can be reduced to
O(log? n).

A major breakthrough has been achieved by the change of adversary model
in (Berman, 2004) — it is no longer assumed that the adversary can see all
the traffic, but only a certain fraction of it. Even if some preferences of the
users are known to the adversary, it is shown that the onion protocol does
not reveal information through traffic analysis. Neither assumptions about the
number of onions nor special addressing limitations are necessary. The path
length required is a small degree polynomial in log n. Finally, we have proved
(Gomutkiewicz, 2004) that a path length of O(logn) is sufficient (which is
optimal).

1.2 Drawbacks of Onion Routing

A systematic overview of adversary scenarios and their capabilities in real
live situations was presented in (Syverson, 2000). The security proofs, men-
tioned above, should not give us any illusions that the onion protocol is secure
in all circumstances. There is a number of tricks that can be used here, based
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on the fact that connections are not static, exist over a certain time, and that the
users have a certain behavior.

A timing attack exploits the fact that closing (resp. opening) a connection
causes disappearing (resp. emerging) of one link both at the source and the des-
tination. Monitoring these two hosts reveals immediately that the connection
has closed (opened) without any complicated traffic analysis. A predecessor
attack (Wright, 2003) is a refinement of this technique. An intersection at-
tack (Berthold, 2000) may occur for instance when a user fetches a certain
Web page (in an anonymous way) every time he starts a browser. An adver-
sary records the users that are active at the time when this page is requested.
The user in question appears quite often in these records. .. New attacks, also
sophisticated ones, may emerge.

1.3 New Results

In this paper we propose how to deal with two problems. The first problem
are node failures in the network. If a path of an onion goes through a node
that is down, the message encoded inside the onion cannot be delivered. This
is a consequence of the fact that private keys of the node that is down must
be used to decode the message and to find out the next node on the path. In
Section 3.1 we show that this is not a serious problem, since at each level we
can encode alternative nodes through which the onion can be processed. Last
but not least, this protocol is as secure as the original protocol in a passive
adversary scenario considered in (Berman, 2004).

The second problem considered here is an adversary who can eavesdrop a
certain fraction of the communication lines at each step; based on this informa-
tion he may destroy all messages sent by arbitrarily chosen servers at the next
step (however, the number of such servers is bounded). Of course, the original
onion protocol is in a hopeless situation against such an adversary: he simply
kills the onions one by one (not caring about their contents and destinations).
In Section 3.2 we show how to cope with this problem. We propose a protocol
such that K onions encoding a message m travel in parallel through the net-
work. A major point in the construction is a mechanism that enables the stream
of K parallel onions to self-recover, even if the adversary succeeds in killing
all but one onion transporting m. The recovery mechanism must be not too ag-
gressive, since the traffic induced may reveal to the adversary the points where
the same message m is located. Then the recovery would bring more harm
than profit: the adversary could destroy all messages transporting m. For this
reason we propose a method that uses sparse communication, which is harder
to be detected. In Section 3.2 we discuss shortly graph theoretic motivation of
our solution.
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2. Onion Protocol and Anonymity

2.1 Classical Onions

We consider a network with n servers, where each pair of servers may com-
municate directly. Each server has a pair of a public and a private key, all
public keys are widely accessible.

Let us recall the onion protocol in one of the simplest versions. Assume that
a message m has to be sent from node A to node B. For this purpose node
A chooses at random A intermediate nodes, say, Ji,...,.Jy (they need not to
be distinct) and random strings 71,79, ...,7a+1. Then A builds an onion O
encoding m using the following recursive formula (Ency means encryption
with the public key of X):

Ox = Encg(m,rat1)
0, = EHCJi(JH_l, Oi+1, T‘i+1) fori < A
O = O

Then @ is sent by A to J;. Node J; decrypts the message with its private key.
The plaintext obtained contains Ja, the name of the next server on the path,
and Oy — the message to be sent to Jo. This is like peeling off the onion Oy:
we remove the out-most layer and forward the subonion obtained to the next
server. This process of peeling off is repeated at each subsequent server until
B gets finally the message m.

The idea behind is that each server J; cannot see what is the contents of the
subonion it sends to the next node — decryption of (0,4 requires knowledge
of the appropriate private keys. So J; cannot see the destination of the mes-
sage for the subonion it possesses. However, note that additional measures are
necessary to protect anonymity of communication. For instance, without the
random strings 7; the following simple attack could be carried out: an adver-
sary traces outgoing communication from J;11. When he detects a message 2
sent from Jj41 to server U he checks whether O;11 = Ency (U, Z). If it is so,
then U = J;19. This test can be carried out for each single step, so finally the
adversary could detect the destination of the message encoded in O; without
breaking encryption scheme used.

In fact additional measures are necessary. For instance, the size of the pack-
ets sent could betray the path along which m is sent. So the encoding must be
combined with appropriate padding (Chaum, 1981).

2.2 Adversary Models

There are many different models for an adversary who tries to break the
onion scheme. This is a major issue, since a protocol resilient to attacks in
one model might be vulnerable in another one. Also, too strong and unrealistic
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assumptions about the adversary may lead to difficulties in showing security
relevance of a protocol.

A passive adversary. A passive adversary may only eavesdrop mes-
sages transported along the network. We assume that the cryptographic encod-
ing is strong enough, so the only information available is where and when the
messages have been sent. 1t is often assumed that additionally an adversary
may get information from a constant fraction of the servers.

There are few variants of the passive adversary:

I Rackoff-Simon model: all communication lines can be traced by an ad-
versary (Rackoff, 1993)

2 Berman-Fiat-Ta-Shma model: only a constant fraction of communica-
tion lines can be traced (Berman, 2004); these lines are determined in ad-
vance (with possibility that at each step a different set of lines is tapped),

3 the same as above, but the adversary can adaptively change his choice
based on the traffic observed till this moment.

The second case is that an adversary is active and can get control over some
number of servers. In this case the adversary may detour a subonion: instead
of sending it directly to the next node J;41, a malicious server can encapsu-
late it with additional layers and send to J;41 through a path of additional
servers. This kind of attack can be traced by attaching some encoded confir-
mation that can be checked by the recipient of the message. Another idea is
to send again the same subonion and trace where we can see subonions that
have already appeared in the network. Repetitions reveal a path of the mes-
sage traced. Through careful monitoring all the traffic such an attack can be
detected, but it is unrealistic that the routers store and check all messages pro-
cessed. As a defense one can use time stamps inside the packet (Kesdogan,
1998) — the subonions that do not arrive in predicted interval of time are imme-
diately rejected. However, even with this approach not all problems are solved.
A malicious server can postpone for a short moment all incoming traffic except
one message. In place of the postponed onions it sends his own bogus mes-
sages with known routes ({(n — 1) — attack from (Kesdogan, 1998)). Then
analyzing the traffic is much easier: many routes are known by the adversary.

We consider the model of an adversary who removes the packets (either due
to faults or with the aim to bring chaos into communication). This is a great
problem: in the network with n/logn malicious servers and A = logn each
packet gets killed with probability £2(1).

2.3 Vertex mixing vs. layer mixing

The adversary model has a big impact on the anonymity mechanism. The
original idea of Chaum is that when at the same time two or more onions get
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BEFORE MIXING AFTER MIXING

Figure 1. Vertex mixing: what an adversary can see.

into the same server that is not under the adversary’s control, then this node
acts as a mix: no relationship between incoming and outgoing onions can be
found by an external observer. The problem is that if number of onions is
moderate the chances that a given onion meets another onion are small. So a
large number of onions is necessary to hide their routes.

In (Berman, 2004) Berman et al. pointed to this weakness and introduced
“layer mixing” (to distinguish it from the “vertex mixing” discussed above).
It is based on the assumption that an adversary may eavesdrop only a con-
stant fraction of all communication lines. Then some number of onions are
processed through hidden communication lines. Even if the adversary knows
which nodes have received these messages, they are perfectly mixed. So the
probability of mixing the messages within a layer of the protocol gets substan-
tially larger.

3. K-Onion and Hydra-Onion Protocols

In this section we present modifications of the onion protocol that are aimed
to make it robust against communication failures. Two kinds of failures are
considered. Either the faults occur at random, or an adversary observes the
traffic and tries to hit vulnerable points.

A general idea is that alternative routes for an onion are provided. At each
hop, there is not one but at least two servers that may process the onion. So if
one destination fails, the message can be sent to another destination.

3.1 DUOQO-Onions for Random Server Faults

3.1.1 Protocol Description.  First we are concerned with random
communication failures. All participants use a symmetric encryption scheme
SEn. Let SEng stand for symmetric encryption with key k and Enc x for en-
cryption under public key of X.
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The simplest version of the DUO-Onion protocol looks as follows: in order
to send a message m to node B, node A chooses at random A intermediate
pairs of nodes, say, (J1,1,J12), - .., (a1, Jx,2), random strings 71, ..., Ta41,
and keys for symmetric encryption ki, ..., kj.

For each 4, we demand that J; 1 # J; 2, but the same server may be chosen to
more than one pair. The onion DO is built via the following recursive formula.

DOy = (Encp(kxi1), SEng,,, (m,map1))
DO; = (Ency, (kiy1,1),Ency, ,(kiy1,2),

SEng,,, (Jisr,1, Jiv12, DOiy1,miq1))  fori <A,
DO = DO;.

The onions are processed in the following way: at a stage 4, either J; 1 or J; 2
has DQ;. First, using its private key, it retrieves k; 1 either from Ency; | (ki 1)
or from Ency, ,(ki+1). Then, with k;41 it deciphers the third part of DO,
getting J; 11,1, Jit1,2, DO;y1. Then it tries to contact J;4 ;. If it is down, it
contacts J;41,2. Then it sends DO;.1 to the server which has responded. If no
server responds, the transmission of the onion dies.

K-Onions Protocol works analogously — we have K possible destinations
during a single hop instead of two.

A certain drawback is that each K -subonion contains K ciphertexts of the
same symmetric key. However, this is not a problem since we expect to use
only small values of K.

3.1.2 Delivery Probability. In this section we check that K-
Onions are more efficient than just sending the same messages for many times.
Let us assume that 7 out of n servers executing the onion protocol are down.
Since the onion paths are chosen at random, the location of these servers does
not matter. Let P(A, k) denote the probability that a random k-onion reaches
its destination server.
For the case of the classical onion protocol we get

PO = (%0) = (1-5)",
where A denotes the length of the onion path. Choosing A = clog n (which is
a secure length for an adversary eavesdropping a constant fraction of commu-
nication (Berman, 2004)), we get P(X, 1) = Q(1) forr = O(n/ logn).

For k-onions we get:

o = (Fl) = (155 - ) = -0

(2) nn—-1""n—k+1
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For A = clogn, we get P(\ k) = (1) for r = O(n/ {/logn). For practical
values of n, we may assume something like logn < 30, so for kK = 5 we get

Hlogn < 2.

On the other hand, it is worth to say that it does not make sense to take large
k, since the ratio between P(A, k) and P(), 1) grows, but the rate of growth
goes down. The biggest change occur for k = 2 and k = 1. Namely,

POK) (11—_(r//n>k)A

P()\1)
B ((1 —r/n)1+r/n4+ (r/n)>+... + (T/n)k"l)))‘
N 1—r/n

= (1+7/n4 (/) 4. .+ (r/n)f DA = (1 +r/n)r.

Practical example.  Let us consider a network consisting of 7 servers
where the number of faulty servers equals r = 0.3n and the path’s length
A = 3. In this case the usual onion reaches its destination with probability
P(3,1) = 0.34 while P(3,2) = 0.75 and P(3,3) = 0.92.

3.1.3 Anonymity Issues.

Unlinkability.  For an external adversary analyzing the traffic the k-onion
protocol behaves just as the original onion protocol. So the results from (Ber-
man, 2004) do apply. .

On the other hand, the naive solution of sending the same message us-
ing multiple onions going through different routes may lead to weakening
anonymity — traffic analysis might be facilitated by the fact that for each pair
(sender, destination) there is a prescribed number of paths.

Adaptive attacks. A malicious server J; , may send the subonion
DO;y1 to Jiy12 instead of J411, if Ji41 2 collaborates with J; .. This en-
ables them to reduce a little bit the unknown parts of the onion paths. By using
similar arguments as in (Gomutkiewicz, 2004), one can show that it has the
same effect as increasing the number of malicious servers by a constant factor.

On the other hand, a malicious server may start a small repetitive attack: it
sends DO;y1 both to Ji1,1 and J;1,9. Then both of them send a message
to the same server — in this way the adversary may identify the server used on
step ¢ + 2. On the other hand, the attack and the malicious server would be
detected easily, so the attack is not attractive for the adversary.

Note that this trick does not reveal any useful information to the adversary
— the only case in which the adversary obtains additional knowledge is when
Ji+1,1 is malicious and pretends that it is down. The only knowledge he may
gain by tracing communication sent by J; 4 is the name of J; 1 2. This knowl-
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edge is of no advantage for him, since he may get the names of J; 421 and
Jiy2,2 by executing the protocol without any tricks.

3.2 Hydra-Onions — Fighting against Active
Adversaries

Now we assume that the adversary traces a constant fraction of all commu-
nication lines and once it identifies the servers holding the same message, it
blocks the outgoing communication from these servers. Of course, it is neces-
sary that a message is transmitted via many routes — otherwise the adversary
would win by simply killing the messages one by one.

The general idea is that we send a stream of messages encoding the same m.
At each moment we have & subonions corresponding to m (provided that the
adversary has not succeeded to kill some of them). Since the adversary may
kill some of the subonions, we propose a mechanism that enables the stream to
regenerate quickly, so that again we a have k subonions corresponding to m.

The construction must be careful, since a stream of messages encoding the
same message may facilitate traffic analysis.

3.2.1 High Level Protocol Description.  Assume that A has
to send a message m to B. Then K intermediate nodes J; 1, J; 2, ..., Ji x are
chosen by A for each i < A. The main change to the previous protocol is
that each of the servers J; 1, J; 2, ..., Ji i sends the onion to two servers from
the list Jiy11,...,Jiy1,x. Namely, J;; sends a subonion to J;11 ; and to a
randomly chosen server J; ) q(;y Where a(j) # j. The choice of a(j) is made
by A during onion construction.
In this way we achieve the following goals:

» since random bipartite graphs have expansion properties, if only a frac-
tion of servers J;1,J;9,...,J; Kk received the subonion encoding m,
after step 4 + 1 the fraction of servers Ji 11, Jit12,- .., Jit1,Kx holding
a subonion encoding m increases with high probability;

= sending a copy of the subonion from each J; ; to all servers J;11 1,J;41,2,
.+« Ji+1, would guarantee immediate recovery of the whole stream
of K copies of subonions containing m. However, the communication
pattern could betray that certain servers are holding a subonion corre-
sponding to the same message. This could make killing m much easier.
A sparse communication pattern proposed does not reveal such informa-
tion to the adversary.

3.2.2 Protocol Description. For the sake of simplicity we de-
scribe and discuss the protocol for K = 3. Server A builds an onion RO via
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the following recursive formula:

ROy = (EnCB(k,\Jrl), SEng, ,, (m,m\ﬂ))
RO; = (EHCJ,-,l (kit1,1Tit1,1), Ency, o (Kig1,2, Tig1,2), Ency, 5 (Kit1,3, 7i41,3),
SEng, 4, (Ji+1,1a Ji-}—l,a(l): k£+1),
SEng, 1 5 (Jit1,2, Jit1,0(2)0 K1)
SEnki+1,3(Ji+1,3’ Jit1,0(3)5 k§+1)a
SEng | ('ROiH)) fori < A
RO =RO;

In this protocol it is not the case that subonions are sent. Namely, when a
server J has to send RQ; to server J', then RQ; is encrypted together with a
random nonce with a public key of J' before it is sent to J'. Alternatively, we
may use a probabilistic asymmetric encryption scheme (such as ElGamal) for
encapsulating RO;.

Let us describe how a subonion is processed. Assume that J receives an
(encapsulated) subonion R(@;. Then J decodes RO; and deciphers the first
three components of RO; with the private key of J. In this way, J obtains
three symmetric keys k, k’, k”. Then J deciphers the 4th, the Sth and the 6th
components of RQO; with the keys, respectively, &, k', and k”. In one case,
J obtains the valid key k;__; and the names of two servers J', J" for the next
hop. (If necessary, we may include some characteristic string in the plaintext
in order to detect easily which of the keys &, k', and k" is valid.) Having & ,,
server J deciphers the last component of RO; and retrieves RO; 1. Then J
encapsulates RO; ;1 as described above and sends the results to the servers J'
and J”, respectively.

3.2.3 Recovery Properties. Assume that the adversary is not
blocking the communication at the moment and there is only one server with
a subonion holding m. Then after one step we get 2 servers with a subonion
holding m with probability 1. If there are already two servers keeping subo-
nions with m, then after one step we have still 2 such servers with probability
% and 3 such servers with probability %. Since the numbers a(j) are chosen
independently at random, our experiment corresponds to Bernoulli trials with
success probability %. So there is no success within £ trials (meaning that we
have still only 2 servers holding m) with probability 2—%,7

For the case when K > 3 the arguments are more tedious. However, let
us point that the following Markov chain & converges quickly. The states of
S are nonempty subsets of {1,...,K}. The transition function of S can be
described as follows: let U be the current state of S; then for each a € U
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choose independently at random an element r(a) € {1,...,K} \ {a}. Then
the new state of S is the set U U {r(a)|la € U}. Due to expansion properties
of random graphs, the chain S converges quickly to the state {1,..., K}. We
skip further discussion on this problem, since we think that small values of
K are most important and for these values the convergence rate can be easily
estimated.

3.2.4 Resilience to Attacks. As mentioned, an adversary who
analyzes the traffic at step 7 may locate the servers holding the same message
m and kill all packets sent from servers holding m at step 7 + 1. In this way
m would disappear, even if the adversary does not know the contents and the
destination of m.

We assume, as in (Berman, 2004), that the adversary may eavesdrop only a
constant fraction of communication lines. Recall (Berman, 2004) that servers
Jiy-oyJm and Ji, ..., J form a crossover structure, if no communication
line (Jg,Jy) for a,b < m is eavesdropped by the adversary. The number m
will be called crossover size.

The ideal situation is when the servers J; 1,...,J; x and Ji411,..., Jig1,x
from the definition of an onion RO form a crossover structure at step 7. Then
the adversary has no trace that they belong together to a certain message m.
What is the probability that such a case occurs? It is hard to answer this ques-
tion: the adversary may adopt some clever strategy to choose the links eaves-
dropped so that as few as possible crossover structures occur. It turns out that
there are graph theoretical limitations on the adversary. Noga Alon (Alon,
2001) (Corollary 2.1) shows the following result:

LEMMA 1 For every fixed € > 0, and every fixed integer t > 0, and for any
graph G with n vertices and at least en? edges, the number of subgraphs of G
isomorphic to Ky (bipartite complete graph with t vertices on each side) is at

least: % (79 (72) (26)#'

In our case we say that an edge (J, J') belongs to G, if the communication
link between j and J' is not eavesdropped by the adversary. The main point in
Lemma 1 is that a lower bound on the number of crossover structures does not
depend on the structure of G, that is, on the strategy of the adversary.

In order to examine the case K = 3, let us note the following: the proba-
bility that J; 1, J; 0, Ji 3 and Jiy1,1, Jig1,2, Jig1,3 form a crossover is at least
£2/2% for a fraction f of links that are not under the adversary’s control. In
this case the probability that the adversary kills all packets holding the message
processed by these servers is about (r/n)3, where r is the number of servers
that can be blocked at step 7 + 1.
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Ji3 Ji+1,3 Jiz @ 0113 Jit1,3

Ji2 Jir12 Ji2 @ 0Ji112 ; >0J; 112

Ji1 Jit1,1 Ji,1 @@ iy 1 Jir1,1

(a) communication (b) crossover (e) adversary’s
pattern view

Figure 2. Crossovers of size 2 and the viewpoint of the adversary.

The adversary may be in trouble even if no crossover of size 3 occurs.
With probability at least f4/2® a crossover of size 2 is formed by two of
the servers from J; 1, Ji 2, Ji 3, say J; g1, Ji,z, and by two of the servers from
Jit1,21> Jit1,2,- By a simple case inspection (see also Fig. 2) we can check
the following fact:

LEMMA 2 Assume that a crossover of size 2 is formed by two servers J; z,,
Jizq from the list J; 1, Ji 2, J; 3 and by two of Ji11,z,, Jiy1,0,- Then for every
choice of a(1),a(2), a(3), the communication lines between J; 1, J; 2, J; 3 and
Jit1,1, Jit+1,2, Jit1,3 where the adversary observes a traffic corresponding to
message m does not form a connected graph.

The meaning of Lemma 2 is that when a crossover of size 2 occurs, then
the adversary cannot link together the nodes J;y1,1, Ji41,2, Jit1,3 — at least
one of then is an orphan. Since we expect that there are many such orphans
the adversary is in trouble: killing m will succeed only if all three servers
Ji+1,1, Ji+1,2, Ji+1,3 are blocked.

For larger parameters K, the adversary should be even more confused (we
postpone the analysis to the full version of the paper). Let us explain some
intuitions behind. For the moment even assume that the adversary knows the
relationships of the kind J; ; — J;11,; and that these relationships are the same
for each onion. We draw a directed additional link multi-graph A describing
step ¢. It has n vertices, with vertex j representing the jth server. We draw
an arc JF in A when at step ¢ server J sends a message to F, where F' is the
“second location” indicated by function a. Let us consider the arcs related to
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processing the same onion. Since each node has out-degree at most 1, we get a
subgraph of .4 with some specific properties (see Fig. 3): there are exactly K
arcs, each connected component contains a single circle and some number of
directed paths leading to the circle. The unlucky case for the adversary is when
there is more than one connected component in this graph - the adversary can-
not link the servers appointed to the same message provided that there many
other components due to other messages. It is known that for large K the size
of largest connected component divided by K is a random variable with prob-
ability distribution that converges with K to a Poisson-Dirichlet distribution.

However, even if there is exactly one component, the adversary might be in
trouble, since we assume that the adversary does not eavesdrop all communi-
cation links, but only a certain fraction of them. In this case the graphs such
as depicted in Fig. 3 get disconnected, since the adversary does not know the
status of a constant fraction of communication lines (see Fig. 4).

4. Conclusions and Open Problems

We disregard the problem of different degrees of vuinerability of the servers
and communications lines. However we should be able to assign different
elements of the network different probabilities of failure or corruption by an
adversary. It is yet unclear how to adopt the onion protocols to this situation.
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Figure 3.

Figure 4.

Jan Twanik, Marek Klonowski, and Mirostaw Kutylowski

Example arcs in A corresponding to the same message.

Adversary point of view for the situation depicted by Fig. 3.
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PERSONAL ATTRIBUTES AND PRIVACY
How to ensure that private attribute management is not
subverted by datamining.

Howard Chivers
Department of Computer Science, Univeristy of York, Heslington, York, YOI0 5DD
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Abstract: The aggregation of personal attributes into user profiles is a significant privacy
concern. Existing attribute management systems support the controlled release
of attributes and unlinkability between session protocols, but do not address
the problem that attributes distributed in this way may be data-mined for
features that allow user profiles to be reconstructed.

This paper identifies the aggregation problem as the missing element in the
protection of personal attributes, and introduces atiribute management
principles that are sufficient to provide an overall framework to protect users
from profile aggregation. The principles are clarified by formalizing them as
constraints on primitive operations in a service-based architecture, and this
analysis is the basis for a proof that they support system wide privacy. These
results are of particular value in the decomposition of business processes into
services, and a location-privacy problem is used to show how they can be
applied in practice.

Key words:  privacy protection, distributed-system security, web-services security, privacy-
enhancing technology, electronic commerce, pseudonymity

1. ATTRIBUTE MANAGEMENT PRINCIPLES

1.1 Introduction

Privacy is a fundamental right in the UN Declaration of Human Rights,
and in the European Union a Data Protection Directive [1] is enforced by
legislation in member nations [2]. These data protection requirements
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embody the concepts of necessity, purpose and consent: personal data can be
processed only if it is necessary for the application, and only for the purpose
for which it was provided. Although the US has not adopted the same
legislative approach, similar principles are described in the influential Code
of Fair Information Practices [3].

The subject of privacy is of growing importance because of the ease with
which information can be assembled and processed, and because of public
sensitivity about commercial trading in personal profiles [4]. Technical
trends toward highly distributed systems also exacerbate privacy
management issues, including the balance between privacy and
accountability [5].

These social, statutory and technical pressures have motivated
researchers to develop protocols that limit access to personal data. The
general approach is to regard any fact about an individual as a private
attribute whose release should be subject to a policy that takes into account
the subject’s consent and the needs of the application. For example,
Shibboleth [6] manages user authentication in this way, and researchers have
proposed pseudonomous PKI attribute certificates [7]; other approaches do
not provide enforcement, but specify contracts [8] or policies [9].

These systems use temporary pseudonyms to ensure that different user
sessions cannot be linked by a primary identity. The type and degree of
unlinkability depends on the protocol, but the pseudonymous user must still
present private attributes in order to access the service. Unfortunately, little
attention has been given to the threat that these attributes may be directly
consolidated by data mining, bypassing the unlinkability of the access
protocol and enabling the profile aggregation that is precisely the issue of
public concern.

This paper addresses the problem of attribute aggregation; it shows how
private attributes can be partitioned and their distribution constrained in
order to ensure that attribute release policies set by a pseudonymous user
cannot be subverted by aggregation in the distributed system.

The remainder of this paper is in three parts; the first is a discussion of
the problem, and proposes attribute management principles as criteria for
system design. The second part clarifies these principles by formalizing them
as constraints on the services and security tokens of a service-based
distributed system. Proof that these constraints are effective is given in
Appendix A. Finally, a location-privacy problem is used to show how these
results can be applied during the system design process.
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1.2 Privacy and Aggregation Management

User concern about profile aggregation suggests that privacy is
fundamentally related to the linkage or correlation of private data [4], and
although data protection legislation is not framed directly in this way, it
supports this view: the UK legislation [2] defines a relevant filing system as
structured, and the linkage of census data to individual population records
led to the landmark constitutional challenge of the 1983 German census [10].

The defining nature of linked data is also argued by Wallace [11] who
defines anonymity as noncoordinatability of traits in a given respect. She
provides a powerful example: a criminal (the Unabomber) was completely
specified by the single trait of his crimes, but remained anonymous until
another trait (writing style) became known. This suggests that linkability of
personal traits is a more fundamental issue than the number of individuals
determined by any given attribute.

Managing the aggregation of private data is therefore a defining feature
of privacy-supporting technologies, implying that the extent that personal
attributes remain independent constitutes the degree to which privacy is
maintained. This definition has the benefit that it naturally includes threats
such as aggregation or data mining. Previous work has addressed unlinkable
privacy mechanisms, but has not made the case for the fundamental
importance of unlinkability as a criterion for technical privacy.

Authentication by attribute, rather than identity, requires an authority
such as the user’s organization to vouch for the attribute, and a temporary
binding between the user and the target service that avoids providing further
information. The user expects that this arrangement will preserve privacy by
preventing the aggregation of attributes released in different sessions.

Systems that pseudonymously manage attribute release have already been
mentioned [6, 7]. There is also an important body of research on unlinkable
protocols; much of which is based on blind signatures [12] and variations
[13] that provide accountability, or on MIX networks [14]. However, these
still require a user to provide authentication information to obtain a service.

Existing work therefore provides only part of the solution. It is also
necessary to ensure that private attributes released to services cannot be
aggregated directly, for example, by using statistical techniques to identify
and exploit overlapping values. This paper proposes attribute management
principles to address this problem; unlinkable protocols are important
supporting mechanisms, but are not discussed further.
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1.3 Indirect Transactions and Attribute Partitioning

Consider the flow of private data in an electronic purchase (for the sake
of discussion, of some CDs). The identity of the CDs is not a privacy
concern unless they can be associated with the user making the purchase,
which requires an identifier such as a bank account number. Privacy
concerns multiply as more aftributes are collected, for example, adding the
user’s address provides both a marketing target and information about social
and economic group.

The user reveals information about buying preferences by selecting the
product and may also provide credit card information to pay for the
purchase. The association of these two attributes of private data allows the
long term tracking of the user’s buying profile. This violates the data
protection purpose principle, because it is not necessary.

The supplier might argue that credit information is necessary to perform
their contract with the subject, but many forms of payment, including cash,
do not identify individual accounts. Even complex financial transactions can
be carried out indirectly, for example via escrow accounts or international
letters of credit. It is arguable, therefore, that this pattern of electronic
business has not been established because of a financial or business
precedent, but because it is technically convenient.

An alternative pattern for the transaction is that the user obtains an
opaque ‘electronic check’ from their bank that is presented to the supplier.
This provides separation of purpose between the private attributes held by
the bank and those available to the supplier. There are a number of possible
implementations of electronic cheques’; this paper uses the generic term
‘authorization token’, implying that such a token does not carry private data.

This example motivates general principles for the design of systems that
manage attribute aggregation: private data provided to any service provider
should be partitioned by trait (or type); and where a service provider needs
to invoke the services of another, then the data subject’s authority should be
conveyed by an opaque authorization token, rather than by the provision of
additional personal information.

1.4 Attribute Management Principles
These ideas can be expressed as attribute management principles that are

sufficient to ensure that no part of a system can aggregate an individual’s
private attributes:

' Such as electronic cash [12] [15], but recall that this paper is concerned with the
management of personal attributes themselves, not the underlying protocols.
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1. Anindividual’s private attributes should be grouped into a number of sets
(named by ‘trait’ or ‘type’).

2. Private attributes provided to any single service provider should be
limited to a single trait.

3. Where a service provider needs to invoke the services of another, and the
second requires attributes of a different trait, delegation of the user’s
authority should be via opaque tickets, rather than by the provision of
additional private data.

These principles do not specify how private attributes should be grouped
into Traits, a privacy policy for a specific system needs to balance privacy
and feasibility when making this choice. A trait should represent a class of
information about a user, for example: buying preferences for particular
products; address and location; employment; bank and credit information.

The next section formalizes these principles, to clarify the constraints that
they represent, and this provides the basis to prove that they are sufficient to
maintain privacy.

2. ANALYSIS

2.1 Introduction

The attribute management principles are intuitively appealing, but their
usefulness must be demonstrated in the context of the rich range of services
that are supported by practical distributed systems. From the privacy
perspective these services can all be viewed as moving data of various types
and origins between principals®. This section models the movement of data
in a service-based system in order to clarify the constraints implied by the
attribute management principles, and shows that they result in the desired
privacy properties for the system as whole.

Both the operation of services, and the distribution of security
management information are important. The primitive operations modeled
are therefore:

o The creation of authorization tokens.

e The distribution of authorization tokens.

e The use of an authorization token to invoke a service.

e The transfer of an authentication token, or other privacy sensitive data,
between principals.

o The transfer of non-privacy sensitive data between principals.

% The term principal is used to denote an application that can both invoke and provide a
service, and is administered by a single authority
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2.2 Formal Model

The following model captures the flow of information between principals
as a directed graph. The main data types are modeled as vertices and the
possible movement of information as directed edges. The information flow
implied by each service is expressed as a relation between vertices, and the
edge set is the union of these relations. This form of modeling is
conservative, because of the implicit assumption that all information flows
are transitive; however, it provides a compact and direct representation of
the service primitives and allows straightforward reasoning about the overall
system. The graph is specified using set theory, in Z syntax [16].

2.2.1 Static types and relations
The base types in this model are the disjoint sets introduced in table 1.

Table 1. Base types

Type Name Description

P Principal Service providers and users

A Private Attribute Private Data, including authentication data
D Public Data Data that is not private

K Authorization Token An opaque token

T Transaction An atomic business transaction

Y Attribute Trait The trait, or type, of a private attribute

Principals are active system entities that can provide or invoke services;
Private Attributes, Public Data and Authorization Tokens are types of data
that can be accessed by Principles, or transferred between them.

Transactions are data types that model system state. Distributed business
transactions are often a sequence of operations with intermediate state held
by the service provider. For example, an on-line purchase may involve the
selection of goods, followed by setting delivery and payment options.
Atomic transactions are an instance of this more general case.

Traits (Y) are used to constrain the model, rather than represent
information sources or sinks. This has the effect of neglecting information
flow through the type system, which is justifiable because Traits are
expected to be static and knowledge of the Traits in the system is not a
privacy concern.

The set of vertices in the model is therefore the union of the base types,
except Y:
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V=PUAUDUKUT o)

Both Private Attributes and Principals have identifiable Traits. It is also
convenient to define a trait matching relation between Private Attributes and
Principals:

YP=P>Y’ (2)
YA=A->Y (3)
MATCH = {(a,p)|3k({(a,k) e YA A (p,k) e YP)} (4)

Both Public Data and Private Attributes are owned by specific Principals:
PUB=D—>7P &)
PRIV=A->P Q)

The information flows present in the initial system are therefore:

IS = PUB U PRIV (N
2.2.2 Transactions

As noted above, Transactions record state. Since we are not concerned
with functional behaviour it is sufficient to record data items that have
contributed to state as a vertex from that data item to a Transaction. The
primitive operations are directly modeled in this way, together with any
constraints required to uphold the attribute management principles.

A Transaction is owned by particular Principal, so any data accumulated
by that Transaction is also available to the Principal:

TA=T—->P 8
A Transaction may make use of local Public Data:

TB ={(d,t)| 3p((t.p) € TA A(d.p) € PUB)} ®

* When relations are introduced, Z = A x Brepresents {(a,b){ae A A be B} as usual,
but additionally where A and B are sets of vertices, the pair (a,b) is a directed
edge from ato b. Functions such as Z=A B similarly have their usual meaning
with the additional connotation of a directed edge.
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Creating an Authorization Token. The purpose of the token is to identify
one or more Transactions. The Token must not carry information about the
state of any Transaction.

CA=K«T (10)

Distributing an Authorization Token. The Token can be distributed to any
Principal.*

DA =K xP (n

Distributing an Authentication Token. This binds Private Attributes from
one Principal to a Transaction owned by a second Principal. It models the
provision of user attributes for the purpose of authentication, or more
generally any operation that transfers private data between Principals.

This operation is constrained by attribute management principle 2,
limiting the distribution of private data to Principals of the correct Trait.

BA ={(a,t)| 3Ip((t,p) € TA A(a,p) e MATCH)} (12)

Using an Authorization token to access a service. This models the use of
an authorization token to invoke a service on an existing Transaction. Of
course, data may be returned to the Principal that invokes this service. This
requires an additional constraint to ensure privacy: the only bindings to the
Transaction must be from Private Attributes that are either private to the
Principal that invoked the service or have the same Trait as the Principal that
invoked the service.

SA ={(t,p)| Va((a,1) € BA = [(a, p) € PRIV) v (a, p) e MATCH])} (13)

Public Data. To complete the graph it is necessary to record data flows
that involve public data. Any item of public data can influence a transaction:

PA=DxT (14)
and data flows between public data items are not constrained:

PB=DxD (15)

* In a practical system, possession, or first use, of a token may confer access to a service, or
there may be constraints on which Principals could make use of a token, either statically
encoded in the access policy of the service or dynamically encoded in the state of the
Transaction, These additional constraints are beyond the scope of this paper.
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Completing the model. The edge set of information flow paths in the
system can now be constructed:

E=ISUTAUTBUCAUDAUBAUSAUPAUPB (16)

2.3 The Privacy Proposition

Informally, the privacy proposition is:

Any flow of information from a Private Attribute to a Principal is either
from the Principal’s own Private Attributes, or from a Private Attribute
of a Trait that the Principal is allowed to process.

A formal account of this proposition and its proof is given in Appendix
A. This demonstrates that the system has the property that no service
provider is able to reconstruct the private data associated with another
Principal by invoking any sequence of system services.

2.4 Summary of Constraints

This analysis clarifies the constraints that are required in a system to
prevent aggregation of personal data. The constraints embodied in the model
are:

A Principal must be assigned a single Trait (Eq. 2).

Each Private Attribute is a member of a single Trait (Eq. 3).

A Principal has an identified set of Private Attributes (Eq. 6).

Authorization tokens must be opaque identifiers that do not include

private information (Eq. 10).

5. Private Attributes provided to a Principal as part of an authorization
token, or otherwise, must match the Principal’s Trait (Eq. 12).

6. Any data returned to a Principal from a Transaction must originate from
either that Principal’s Private Attributes, from Private Attributes that
match the trait of the Principal, or from non-private data (Eq. 13).

These constraints mirror the privacy principles exactly; the last two (5,6) are

important because they provide a more detailed formulation of the second

principle. The first of these (5) is a simple statement of principle 2 (only
provide attributes to principals with appropriate trait); the second (6) proves
to be subtler:

o The ‘Transaction’ is a record of information flow into service state, and
so this places a requirement on service providers to know when state has
originated from private data.

e A data item that originates from private data may be returned to the
original owner of that private data, or to any Principal of the correct trait.

Do —
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3. USING THE PRINCPLES

The foregoing demonstrates that comprehensive attribute protection requires
unlinkable protocols, information flow trust in services, system-wide
knowledge of service traits, and agreements about how attributes are
grouped into traits. However, if attribute management principles are
followed when business processes are decomposed into services, then some
of these constraints (such as knowledge of the trait of a service) can be
encoded in the design, rather than requiring operational mechanisms. Space
precludes a full discussion of implementation issues, but a further example
will illustrate this process.

A common concern in mobile computing is location privacy — how users
are able to obtain services based on their location, while avoiding personal
tracking. The attribute-management solution is to query services by
providing the user’s location, but no further information. The issue of
unlinkable temporary pseudonyms has also been considered in this context
[17] but researchers have not dealt with the problem that further personal
attributes are needed to utilize services after they have been located.

Consider the case of a roaming user who wishes to print a document. The
user requires a print service to locate a nearby printer and manage printing.
The document resides on a workgroup server, to which the user must provide
authentication information before access to the file is granted.

In this case it is straightforward to partition the user’s personal attributes
(location and workgroup information) into two separate traits, and assign one
to the print system and the other to the file server. The primitive protocol
elements used in the analysis (see 2.1) are sufficient to outline the process:

o The user presents a workgroup authentication attribute to the file server
and obtains an opaque authorization token that confers access to the
specified file.

o The user provides location co-ordinates to the print service, and obtains a
reference to the nearest printer.

o The user presents the authorization token to the printer, which is able to
retrieve the file and print it.

This outline description avoids the protocol details: how a user
establishes temporary unlinkable pseudonyms with the services in order to
carry out the transactions, suitably opaque forms of authorization tokens, and
the use of an attribute authority to authenticate the workgroup attribute.
However, it does demonstrate how the attribute management principles can
be used to influence process design, and the importance focusing on the
whole process chain, not just a single service interaction.
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4. CONCLUSIONS

The extent that personal attributes can be linked determines the extent
that private data can be profiled; this is of fundamental importance to
privacy, and this viewpoint is consistent with the principles of purpose and
consent contained in the Data Protection standards.

This paper has investigated the threat that users’ private attributes may be
directly aggregated into personal profiles, and shows that it is possible to
avoid this problem if services are designed to meet attribute management
principles (1.4). The principles group private attributes into #raifs and ensure
that no service needs attributes from more than one trait.

The analysis of these principles shows that they can be applied in service-
based systems that support the distribution of authentication and
authorization tokens [ 18], and a worked example demonstrates their practical
use in the decomposition of a business process into services.

The constraints derived in the analysis provide a single framework for
system level privacy that motivates the need for established mechanisms,
such as unlinkable protocols, as well as additional concerns arising from
direct attribute aggregation.

The analysis and proof shows that if the management principles are
observed then the desired property of unlinkability is upheld in the system as
a whole. The relative robustness or fragility of different attribute distribution
policies in the face of a collusion attack is still an open question, but the
principles described here are believed to be robust, because they would force
many services to collude before a user profile could be reconstructed.
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APPENDIX A: PROOF OF THE PRIVACY PROPOSITION

Section 2.3 defines the privacy proposition as: Any flow of information from a
Private Attribute to a Principal is either from the Principal’s own Private Attributes,
or from a Private Attribute of a Trait that the Principal is allowed to process.

PRIVATE _FLOW = PRIV U MATCH an

Proof. The method is to enumerate all possible paths from A to P in the graph, and show
that this set of paths is a subset of PRIVATE_FLOW.
The set of all possible paths is the set of possible relational compositions of the edge set:

PATHS=EcEcEoEcE.... (18)

The possible paths in this graph can be enumerated straightforwardly by inspection of their
types, assuming the base classes in the model are disjoint:

PATHS =PRIV U(BA o TA) U(BA o SA) )
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The three sets whose union is PATHS are considered separately and each is shown to be a
subset of PRIVATE_FLOW:

PRIV
PRIV occurs in (17) as a subset of PRIVATE_FLOW.

BA-TA
Expanding the definition of composition, then further expanding BA:
BA o TA ={(a,p)| 3t((a, t) € BA A (t,p) € TA)}

20
={(a,p) | 3t(3Ix[(t, x) € TA A (a,x) € MATCH] A (t,p) € TA)} 20

Moving the quantifier for x out; then since (t,x) and (t,p) are in TA, and TA is a function
we can conclude that x=p, eliminate x by substitution and remove one of the conjoined TA
membership predicates:

={{a, p)| (¢, p) € TA A (a, p) € MATCH)} @2n
Moving quantifiers in and re-arranging: -
= {(a, )| 31((t, p) € TA) A ((a, p) € MATCH)} (22)

Since an element of this conjunction is MATCH, we can conclude that B4-TA4 is a subset
of MATCH and hence, from (17) a subset of PRIVATE FLOW.

BA-SA
Expanding the definition of composition, then further expanding SA:
BA oSA ={(a,p)| 3t((a,t) e BAA (t,p) € SA)}

23
={(a,p) | It((a,t) € BA A[(a,t) € BA = ((a,p) € PRIV) v (a,p) e MATCH)])} @3)

Expanding the implication [...] and distributing the conjunction across the resulting
expression:

={(a,p)| 3t([(a,t) e BAA—(a,t) e BA]V

[(a,t)e BAA(a,t)e BAA((a,p)e PRIVvVv (a,p)e MATCH)])} @9

The left hand side of the disjunction can be eliminated (false), moving the quantifier in and
eliminating one of the conjoined BA membership predicates:
={(a,p) |[(a,p) € PRIV v (a,p) e MATCH] A 3t((a, t) € BA)} 25)

Since an element of this conjunction is (PRIV v MATCH), we can conclude from (17) that
BA-SA is a subset of PRIVATE_FLOW.

Conclusion
Each of the three sets PRIV, BA°TA and BA=SA are subsets of PRIVATE_FLOW; their
union PATHS (19) is therefore also a subset of PRIVATE FLOW. QED



LOCAL MANAGEMENT OF CREDITS AND
DEBITS IN MOBILE AD HOC NETWORKS*

Fabio Martinelli, Marinella Petrocchi, and Anna Vaccarelli
Istituto di Informatica e Telematica — CNR - Pisa, Italy
{ fabio.martinelli, marinella.petrocchi,anna.vaccarelli } @iit.cnr.it

Abstract Nodes in mobile ad hoc networks often need the help of others in order to have
their packets delivered to their destination. However, nodes may not be governed
by a single authority and need not share a common goal. Thus, a selfish node
may prefer to save resources for its own communication, rather than to forward
packets for other nodes. We suggest to collect information about the forward-
ing of packets in the network in a decentralized manner. Through reception of
acknowledgments, a node can update a local repository, on which the node can
rely to judge the behavior of the other nodes. We define a secure structure for
the acknowledgments and the rules for updating the local repository. Also, we
discuss a solution to achieve a univocal identification of a node in MANET en-
vironments.

Keywords:  Mobile Ad Hoc Networks (MANETS), Selfishness

1. Introduction

Unlike traditional mobile networks, ad hoc networks do not rely on any
wired infrastructure. Instead, the network is kept connected by the mobile
hosts. In order to make a mobile network functional, the nodes need to be
self-organized, in such a way that a message is delivered from a source to a
destination through a set of intermediate nodes. The deployment of ad hoc
networks for civilian applications is taking a footing. In such applications, the
nodes are not governed by a single authority and need not share a common
goal (the contrary could be the case in emergency and military applications).
Thus, cooperative behaviors, such as forwarding each other’s packets, cannot
be easily assumed. The single nodes could prefer to save battery life for their
own communication, rather than to forward packets for other nodes. Such an
attitude is denoted in the recent literature as selfishness of the node. Simulation
results (see, e.g., (Michiardi and Molva, 2002b)) have recently pointed out that

*Work partially supported by the MIUR project: “Strumenti, Ambienti e Applicazioni Innovative per la
Societa dell’ Informazione”, sottoprogetto SP1: Reti INTERNET: “efficienza, integrazione e sicurezza”; by
the CSP project: SeTAPS 1I; by the Quality of Protection (QoP) project: CREATE-NET.
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a selfish behavior can be as harmful, in terms of the network throughput, as a
malicious one.

There is a growing interest in the research community for detecting and
preventing selfish behavior, and promoting cooperation between nodes, (see,
e.g., (Buchegger and Boudec, 2002; Buttyan and Hubaux, 2002; Marti et al.,
2000; Michiardi and Molva, 2002a; Salem et al., 2003; Zhong et al., 2003)).
Here, we propose an infrastructure for a local management of credits (i.e., a
measure of how many packets node A has forwarded for node B) and debits
(i.e., a measure of how many packets node B has forwarded for node A). Each
node maintains this information in a local repository that we call credit table,
on which the node can rely to judge the past behavior of the other nodes in
the network. More specifically, we define rules for the table initialization, its
maintenance, and secure acknowledgments testifying the actual forwarding of
packets in the network.

MANETs are prone to the following security threat: a node could be tempted
to discard its initial identity and re-enter the network in disguise in environ-
ments where i) users are punished for their selfish behavior, or ii) new users
are a priori granted to have an initial amount of packets forwarded. We inves-
tigate solutions to achieve a univocal relation between a physical device and
the identity it claims at its first steps in the network.

We propose to use network-layer acknowledgments (additional data in rout-
ing protocols specifications like (Johnson et al., 2001)) to provide to the packet
source an authenticated proof that the packet has been delivered to its destina-
tion. We specify the structure for the acknowledgment request and the corre-
sponding acknowledgment. Then, we introduce a mechanism that amortizes
the signaling of “occurred delivery” over blocks of n data packets, thus reduc-
ing the communication overhead on the way back from destination to source.
Further, we deal with some kind of attacks to which our scenario is prone.

Finally, in the model we have developed, if node A behaves well in for-
warding packets for node B, then it can exploit this correct behavior only with
B (meaning that A may rely on routes including B for sending its packets).
Intuitively, systems based on such a rule can get stuck. Then we introduce the
notion of credits transferring, according to which A may ask B to transfer, in
a secure way, its credits to some other nodes.

The remainder of the paper is organized as follows: the next section illus-
trates related work in the area. In Section 3, we summarize the basic operation
of the Dynamic Source Routing protocol (DSR), on which we rely at routing
level. In Section 4 we define the trust setup of the network and the adversary
model. Section S is dedicated to design the structure of the credit table. Then,
we introduce the notion of credit transferring and we conclude the paper.

2. Related Work

We discuss here some work related to secure on demand routing protocols
and cooperation enforcement in mobile ad hoc networks.
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So called —on demand routing protocols— are those routing protocols in
which a node tries to discover a route only when it has a packet to send.

Among on demand routing protocols, the Dynamic Source Routing proto-
col (DSR (Johnson et al., 2001)) is a protocol providing self-organization in
configuring routing topologies for mobile wireless networks. It consists of two
main phases, Route Discovery, the mechanism by which a source node, that
does not have in its Route Cache the route to some destination yet, initiates
to find a route, and Route Maintenance, the mechanism by which the source
node detects, while sending a packet to some destination, if the route has been
broken.

Hu et al. propose Ariadne, (Hu et al., 2002), securing a basic version of
DSR. Ariadne provides: i) source authentication at the target’s side; ii) authen-
tication of each entry of the discovered path at the source’s side; iii) integrity
of the discovered path.

In (Zhou and Haas, 1999), the authors highlight peculiarities of ad hoc net-
works to fight against possible misbehaviors. Since routing protocols like DSR
can return multiple routes, a node could exploit this redundancy to switch to
an alternative route when the primary one has been broken because of a mis-
behavior.

A reputation system may be used in ad hoc networks to provide incentives
in order to forward messages, e.g., see (Buchegger and Boudec, 2002; Marti
et al., 2000; Michiardi and Molva, 2002a). Both (Buchegger and Boudec,
2002) and (Marti et al., 2000) assume a network layer based on DSR. In
(Marti et al., 2000), the authors consider complementing DSR with a watchdog
mechanism to identify the misbehaving nodes, plus a path-rater mechanism to
build new routes avoiding those nodes. Even if they show it is possible to
keep the throughput of the network over a certain threshold even in presence
of misbehaving nodes, the last are still allowed to send and receive packets.
In (Buchegger and Boudec, 2002), the authors choose to act in a similar man-
ner. They propose the CONFIDANT protocol, in which DSR is fortified by a
neighborhood monitoring! and a trust manager which sends and receives alarm
messages to and from other trust managers. A reputation system maintains a
table listing ratings for all nodes and a path manager changes the route when
the ratings for some nodes fall under a certain threshold. Hence, misbehaving
nodes are totally isolated from the rest of the network.

We base our work on a (secure) DSR, like (Buchegger and Boudec, 2002;
Marti et al., 2000) for MANETSs. Similar to (Marti et al., 2000), our nodes
do not exchange information with each other and they locally maintain history
about their past behavior. Contrary to (Marti et al., 2000), we achieve informa-
tion through cryptographic and acknowledgment mechanisms, whereas (Marti
et al., 2000) assumes wireless interfaces that support promiscuous mode oper-

'In broadcast mediums, hosts are able to listen to niessages that are not addressed to them. In particular,
neighboring nodes are able to listen to their next-hop node transmissions.
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ation. When this mode is enabled, a node can listen in on a neighbor’s traffic.
Thus, when A forwards a packet to B, A can overhear if B, in its turn, forwards
the packet. Hence, (Marti et al., 2000) relies on first-hand information (e.g.,
experienced and observed forwarding behavior of neighbors). Instead, we rely
on trusted second-hand information, close to the approach of (Buchegger and
Boudec, 2002), but we do not directly punish misbehaved nodes, rather we dis-
tinguish the well-behaved ones. Further, we focus on cryptographic solutions
to handle the security of the information about the attitude of the nodes w.r.t.
forwarding or dropping packets.

Michiardi and Molva, (Michiardi and Molva, 2002a), analyze enforcement
of cooperation in game theoretical terms. The authors introduce the concept
of redemption of nodes, i.e., a misbehaving node starts well-behaving can be
re-integrated in the network. The work in (Urpi et al., 2003) develops a for-
mal model, based on game theory too, that captures features of MANETS like
node mobility and selfishness. The paper provides a general model to describe
cooperation enforcement policies.

Another possibility to provide incentives is to award well-behaving nodes
with credits. (Buttyan and Hubaux, 2002) introduces a virtual currency called
nuglets, by which a node is being paid when it forwards packets. Also, the node
is forced to pay nuglets to send its own packets. With a pure selfish behavior,
the node will soon finish its money and will not be able to send packets. In
order to avoid the possibility that a node arbitrarily increases its own nuglets,
a tamper-proof security module is required at each node.

The approach in (Buttyan and Hubaux, 2002) may appear close to our ap-
proach. As shown in Section 5, our packet source increases a debit counter
for B upon receiving a proof that B has actually forwarded the source’s pack-
ets. On the other hand, (Buttyan and Hubaux, 2002)’s philosophy is different
from ours since our money is not physically gained by B, rather we rely on
the fact that the source reasonably returns the favor to B for subsequent com-
munication. Further, we do not put constraints to the node’s capability to send
packets. For this reason, and for the fact that each node will base its behavior
on the data locally maintained, we do not need a tamper-proof module at each
node. Within our framework, the credits that we gain cannot be spent with all
nodes in the network, but only with those nodes for which we have forwarded
something. On the contrary, nuglets can be spent for sending packets over all
the available routes. We try to fill this gap by introducing the notion of credit
transferring.

An award-based technique has been recently proposed also in (Zhong et al.,
2003), where the authors rely on a central authority. Basically, when a node
receives a message, it keeps a receipt for that message. Then, the node re-
ports to the authority all the collected receipts. The authority evaluates the
receipts and, consequently, it assigns charges and credits. The system does
not need tamper-proof modules. (Zhong et al., 2003) presents similarities with
our work because it considers secure receipts to testify the correct packet de-
livery. However, we rely on a central infrastructure only when a node enters
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the network, in order to bootstrap trust. Indeed, our solution exactly tries to
avoid the necessity of such a central authority during the whole lifecycle of the
community. We propose a self-organized credit management.

We ought to cite relevant work related to enforce cooperation between nodes
belonging to other scenarios. Indeed, besides pure ad hoc networks, so called
multi-hop cellular networks are getting a footing too. They combine features of
both cellular and mobile ad hoc networks. Basically, they are cellular networks
where there is the possibility of peer to peer or relayed multi-hop connections.
Mobile hosts communicate with a wired infrastructure by means of wireless
technology. A peculiarity is that communication between a base station and a
mobile station may be relayed by other mobile stations. As novel work on co-
operation in multi-hop cellular networks, we cite the approach of (Salem et al.,
2003). Here, all communication between mobile hosts are required to pass
through a base station, that actually acts as an authority for the distribution of
symmetric primitives for securing data. Further, the base station is responsible
for charging the initiator of a communication and for awarding the forwarding
nodes.

Note that a multi-hop cellular network scenario allows (Salem et al., 2003)
to exploit a base station either for the distribution of secret keys, thus exploit-
ing symmetric cryptography between the base station and the nodes, and for
charging and awarding nodes. Thus, (Salem et al., 2003) nicely addresses a
scenario where a central authority is given for free.

(Lamparter et al., 2003) proposes another award-based mechanism for mo-
tivating cooperation in what the authors call stub ad hoc networks, i.e., mobile
networks with access to the Internet. Again, an external third party authenti-
cates the nodes involved in a communication and it assigns charges and credits.

3. DSR

DSR (Dynamic Source Routing, (Johnson et al., 2001)) is an on-demand
routing protocol designed to be used in mobile ad hoc networks. It consists of
two main phases, Route Discovery, i.e., the mechanism by which a source node
initiates to find a route, and Route Maintenance, the mechanism by which the
source node detects, while sending a packet to some destination, if the route
has been broken.

The initiator of Route Discovery sends a Route Request message as a local
broadcast specifying the Discovery’s target. Each node receiving the request
appends to the request its own IP address, unless it has recently seen that re-
quest, then it re-broadcasts the request. When the target receives the request,
it creates a Route Reply message containing the list of addresses and sends it
back to the initiator.

Route Maintenance monitors the reliability of a route. Detection of link
breaks is often provided at no cost, when the routing protocol in use relies on
a Medium Access Control protocol such as 802.11 (of the IEEE Computer So-
ciety, 1999), that provides link-layer acknowledgments. In this case, to test the
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reachability of the next-hop node, the previous-hop node waits for the recep-
tion of a link-layer acknowledgment (ACK). A limited number of retransmis-
sions of the same packet is due, then, if the node does not receive link-layer
ACKs from its next-hop neighbor, it sends a Route Error message back to the
source, notifying it of a link break.

Instead of using link-layer acknowledgments, a node can explicitly require
a network-layer acknowledgment to the next-hop neighbor (Johnson et al.,
2001). The acknowledgment request is added as an optional part in the DSR
header. In Section 5, we will propose to exploit network-layer ACKs to convey
information about the actual forwarding of packets in the route. Though these
ACKs were born with the intent of detecting link failures, we will exploit them
to update information that each node locally maintains. We will suitably mod-
ify the acknowledgment mechanism, such that the nodes will be able to prove
to have forwarded packets along a certain route.

Hereafter, it is understood that we rely on link layer ACKs at Medium Ac-
cess Control level to detect link failures, while network-layer ACKs are used
to convey information about the forwarding of packets. Further, we assume
bidirectional communication on every link, i.e., if node A is able to transmit to
node B, then B is able to transmit to A.

4. Trust Setup

Before deployment, each node in the network generates a pair of public/pri-
vate keys. A correct use of asymmetric cryptography requires to authenticate
in a secure manner the association between the public keys and the identities
with which they are associated. Public key certificates are a very well-known
solutions to manage the matter. In frameworks where certificates validate the
nodes at stake, we get into the issue of defining to which identifier (e.g., node’s
identifier, IP address, MAC address, efc.) a public key must be associated. In-
deed, an user could be tempted to discard its initial identity (hence requiring
a new certificate, tied to a new identity) when its rating falls below a certain
threshold. In reputation systems where misbehaving nodes are punished ac-
cording to their reputation ratings, e.g., by being isolated from the rest of the
network, a way for the node to re-enter the network is to start from the begin-
ning in disguise. Thus, the key point for MANETS is not only bootstrapping
authentication of each node, e.g., by establishing an authenticated link between
a node’s attribute and a public key, but also to avoid the delivery of two, or
more, certificates that link different identifiers to the same device.

Location-Limited Channels (LLCs), out-of-band channels to bootstrap au-
thentication in wireless networks, were first introduced in (Stajano and Ander-
son, 1999) and successively inherited by (Balfanz et al., 2002). In the former
work, the Resurrecting Duckling protocol sets up a relationship between two
devices, by exchanging a secret key over an LLC established through physical
contact. In the latter, a pre-authentication phase has been considered, where
mobile hosts exchange data that will then be used for subsequent authentica-
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tion of the parties at stake, e.g., the parties may commit to their public keys
over LLCs. LLCs must support: i) demonstrative identification, i.e., identifica-
tion based on physical context (e.g., operators must be able to visibly control
which devices are communicating with each other during a transmission); ii)
authenticity, i.e., it is not feasible, at least with high probability, that a host
transmits over these channels without being detected.

We provide the network with an infrastructure of authorities and LLCs s.t. a
certificate is delivered over the LL.C to an user that has requested for it over the
LLC. By exploiting LLC features like physical contact, (Stajano and Ander-
son, 1999), — or demonstrative identification and authenticity, (Balfanz et al.,
2002) — a device is able to obtain a certificate only upon communicating under,
a visible monitoring, a univocal credential (hereafter, UC). Such a credential
could be either the serial number or the MAC address physically assigned to
that device. Although a MAC address can be forged at software level, here we
require its physical acquisition. The released certificate associates a public key
(acquired by the authority together with UC) with the hash value of UC and it
is signed by the private key of the authority.

By virtue of the media over which data are sent, a credential can be achieved
by an authority in an unforgeable way. Thus, we extend the use of LLCs,
originally introduced for pre-authentication between devices that successively
communicate with each other. We propose them to assign unique certificates
to mobile devices, thus precluding a device from re-certifying with a new UC.

One may comment that in the environment under investigation an approach
based on a Certification Authority is not adequate, given the fully distributed
and self-organizing topology of mobile ad hoc networks. Note that assump-
tions relying on central facilities intrinsically exist in the literature. As an
example, nuglets in (Buchegger and Boudec, 2002) are universally known as
valid by the community, and a tamper-proof module is required at each node.
This makes it reasonable to think about an initial bootstrapping of the required
infrastructure. Further, note that the use of the authority is here limited to an
initial phase, in which bootstrapping of some required features is achieved,
while other schemes, e.g., (Lamparter et al., 2003; Zhong et al., 2003), rely on
a central facility for the whole network lifecycle.

Identities in digital certificates.  Although in standard X.509 based
PKIs the same CA does not knowingly issue certificates to different entities
under the same distinguished name, i.e., all the valid certificates related to the
same distinguished name are bound to the same entity, it could be possible for
one entity to obtain several certificates, whose validity periods possibly over-
lap, validating different public keys under different pseudonyms. However, in
many applications, there is the need for a third party to identify certificates that
are bound to the same entity. Uncertainties in taking a decision are, for exam-
ple, when: 1) different pseudonyms are used by the same entity; ii) certificates
issued by different CAs present a coincidence of names in the distinguished
name field. Steps towards a possible solution are in (Pinkas and Gindin, 2004)
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(released on January, 2004, it will expire on July, 2004), where the concept of
Permanent Identifier P has been defined. PI is assigned to an entity by an As-
signer Authority, and any certificate including the same identifier refers to the
same entity, whatever the distinguished name may be. Since organizations can
create links between different certificates through Pls, privacy problems can
arise. Privacy issues are actually taken into account in (Jong-Wook and Polk,
2003) (released on October, 2003, it has expired on April, 2004; as declared by
the authors, it should be considered as a work in progress — the same holds for
(Pinkas and Gindin, 2004)), where the authors propose the notion of Protected
Identification Information, i.e., a commitment to PL.

Here, we consider a scenario with similarities to the above-depicted one. In
particular, in our scenario there should be, at any time, only one valid certificate
related to a certain device. (Actually, one may consider key rollover features
for the renewal of certificates. We do not deal with key rollover in the current
work. We assume here the lifetime of the network under consideration to be
shorter than the lifetime of all the certificates at stake.)

Thus, we do not only need to find a credential cr peculiar to device dv, thus
allowing a univocal association cr—dv, but also we need to assure that dv, at any
time, does not possess more than one valid UC. We remark that this require-
ment is due since devices may easily use pseudonyms and IP addresses may be
assigned by any mechanism (e.g., through DHCP for dynamic assignment).

We rely on some physical attribute of the devices at stake (e.g., the serial
number), unforgeable since acquired by the authority through LLCs. At any
time, the authority is responsible for the existence of one valid certificate re-
lated to a certain UC. Note that UCs do not appear in the certificate as a
plaintext, hence our scheme may preserve privacy of the device at stake.

Finally, some words about open issues we do not deal with in this paper.
Digital certificates have a validity period, after that they expire. One may also
explicitly ask the certificate issuer to revoke the certificate, when, for instance,
the user’s private key is lost or compromised. In our framework, in case the
private key is stolen, the responsibility for the thief’s actions could fall on the
original user. Indeed, the certificate binds the public key corresponding to
the stolen private key to a UC that unequivocally identifies the original user.
Dealing with expiration and explicit requests for revocation is actually a part
of our ongoing research.

Adversary model.  According to (Michiardi and Molva, 2003), “a self-
ish node does not directly intend to damage other nodes [...] by disrupting
routing information {...] but it simply does not cooperate to the basic network
functioning”. Routing disruption attacks are those attacks, (Hu et al., 2002),
where an adversary can route packets in a dysfunctional way, e.g., it may at-
tempt to make a suboptimal route to be chosen, for example a longer one.
On the other hand, some authors assume that a selfish node may have also an
active, malicious behavior, located somewhere between a non-cooperative be-
havior and a misbehavior aiming at damaging the others. As an example, in
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a reputation system providing awards, like the one in (Buttyan and Hubaux,
2002), a tamper-proof module is required at each node to prevent the node
itself from intentionally increasing its nuglet counter.

The above considerations lead us to assume the following: a selfish node
could not cooperate to the basic network functioning (e.g., packet forward-
ing) and it could also illegally act in order to obtain benefits for sending its
own packets. Suppose an adversary adds virtual nodes to a route which it
belongs to, and suppose furthermore the adversary owns those added virtual
nodes, then, it could consequently take the credit for the correct behavior of
these nodes. Hence, it appears necessary to supply the network with protocols
guaranteeing authenticity and integrity of control routing packets. To this aim,
one may assume at routing level a secure version of DSR, like Ariadne (Hu
et al., 2002). In our architecture all nodes have their cryptographic pair of keys
certified before entering the network. Thus, we assume a secure Route Dis-
covery based on Ariadne in its digital signature version (i.e., Route Request is
composed by nested signatures of IP addresses). We further assume the follow-
ing extension: node i, receiving and processing a Route Request, appends its
digital certificate Cert® to the request. Thus, Route Reply back to the source
contains a certificate list, and each node receiving Route Reply is required to
cache the list. Finally, node i, taking part in Route Discovery, appends to the
request the hash of its univocal identifier, A(UC}).

Route Requests presenting more than one signature verifiable with the same
public key should be marked as invalid requests and discarded. Further, there
must be a correspondence between each fingerprint h(UC;) certified in Cert!
and the one in the signed request.

A final remark: a certificate is validated by verifying its digital signature
through the public key of the authority that has released the certificate. We
assume that such public key is transmitted through the LLC.

5. The Credit Table

A table called the credit rable (CT) is maintained at each node’s side. Rows
in the table consist of triples (h(UC), # debs, # creds), where h(UC) is the hash
value of its univocal identifier, and # creds and # debs are the current values of
the credits and debits counter related to that node.

The entity who maintains the table, say node A, quantifies the good behav-
ior of the node corresponding to A4(UC), say node B, w.r.t. B’s past attitude to
forward packets for A. From a complementary point of view, node B, that main-
tains in its turn memory about its behavior w.r.t. A, quantifies how much A can
be indebted to B, i.e., until when B can run the risk to forward packets for A.
To limit the damages to forward packets for selfish nodes that do not return the
favor, we give an upper bound over which it is not possible to help a node. We
set this value to a default value gap > 0, equal for all nodes when they enter
the network. Potentially, the entity who maintains a table can assign different
values for gap to different entries in its table. For example, after deployment, a
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node A can set n different values gap;, ..., gapy, according to the perception
A has about nodeq, . . . , node,’s behavior (the latter being entries in A’s table).
Provided that node B behaves correctly, it forwards packets for node A if creds
— debs < gap, where debs and creds are the value of the debits/credits counters
related to A in B’s table.

B spends the earned credit creds at A’s side when it starts sending packets
along a route including A. From another point of view, suppose B needs to
send packets to destination D: it either can recover an established path from its
route cache or starts DSR Route Discovery, possibly returning several paths. In
any case, by maintaining history of the past behavior of the network, B could
choose the more convenient route (in terms of the nodes belonging to the route)
rather than the shortest one.

CT Initialization. § asks for Route Discovery the first time it needs to
send packets to destination D. The hash values of the univocal identifiers of
the nodes in the returned path are the first entries in §’s table. For all entries,
the initial value assigned to both debs and creds is zero.

A CT table is initialized also by nodes belonging to a discovered path.
Hence, a node forwarding a Route Reply message back to the source initializes
its table by inserting those nodes listed in the path list, source included.

CT Maintenance. CT Maintenance is the mechanism by which the nodes
update their CT. There could be two cases: 1) the node is the packet source
S. In this case, updating the table happens once an authenticated proof has
been received which testifies that the packet has been delivered to its destina-
tion. The authenticated proof is contained in a network-layer acknowledgment.
When the source receives the acknowledgment, it increases by one the debs
field correspondent to the identifiers of all the nodes constituting the current
route. Thus, debs gives a measure, at S’s side, of how many packets a certain
node has forwarded for S. 2) The node belongs to the route from source S to
destination D. Upon forwarding a packet, the node increases by one the creds
field for S. Thus, the creds counter maintains information about how many
packets the node has forwarded for S. Before forwarding a packet, the node
checks if the difference of creds and debs related to S is greater (or equal) than
the default value gap (or the value gapg that the node has assigned to S). If so,
the node forwards the packet for S (unless the node is a selfish one), otherwise
it drops the packet.

We do not need a tamper-proof security module at each node, because the
information recorded in a node’s CT does not influence the rest of the network.

5.1 Authentication of data packets.

In the following, we consider a simple path from node S to node D through
intermediate nodes A, B and C. We call route S-A-B-C-D Route 1.

In (Salem et al., 2003), the authors consider two kind of attacks to which a
mobile ad hoc environment is prone. The first attack is when an intermediate
node, say A, exploits a sub-route of Route 1, e.g., A-B-C, to send its own
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packets. A may claim that those packets come from S and intermediate nodes
B and C will charge S upon forwarding the packets. The second attack is the
free riding attack. A may append (or substitute) its own payloads to the data
packets transmitted from S to D over Route 1. The forged payloads may be
consumed by C, that colludes with A, and B will charge S.

The above-mentioned attacks may be solved by exploiting part of a mech-
anism originally developed to sign digital streams, (Gennaro and Rohatgi,
2001). Let us suppose that S is to send blocks of n data packets to D. The
construction exploits the technique of embedding the hash of the following
packet in the current packet. Bootstrapping authentication is obtained by ap-
plying an initial digital signature, in combination with hash chaining. p; be the
i-th data packet sent by S (packet header plus meaningful payload). Then, the
high-level formalization is as follows (we omit to explicitly denote the inter-
mediate nodes A, B, C):

0 S = D ogh: (b}
i) S — D :pi: opuh(py,) i=1,...,n—1
n) S — D :p,: py

By doing so, source authentication is provided. Then, an intermediate node
neither can append, or substitute, meaningful payloads to the data in the packet,
since it should be able to forge digital signatures and hash functions, nor can
claim its own transmissions to come from S, since it does not know the pri-
vate key pkgl 3. Finally, this technique is applied on the whole packet, thus
preserving integrity both of the data and of the packet header. Note that that
construction assures authenticity to the ACK request option too.

Structure of network-layer ACKs and ACKs requests. Instead of requir-
ing one ACK for every single packet arrived to its destination, we expect one
ACK for every single block of n packets. This reduces the communication
overhead on the way back from D to S.

To this aim, we propose the ACK request option in the first data packet
header to have the following structure:

ACK Req Opt: << type, len,id, SAddr, DAddr >>

where rype specifies this is an acknowledgment request option, len is the length
of the option, id is the identifier of the packet to be acknowledged. We set id
= n, i.e., the number of packets for which an acknowledgment is required,
starting from this data packet. SAddr is the address of the node requesting the
acknowledgment* and must be set to (IPs, h(UCs)). DAddr is the address

2Note that possible solutions to these attacks are beyond the scope of secure ad hoc routing protocols like
Ariadne. Indeed, they address the authenticity of routing control packets, but not the one of data packets.

3 As is common in security protocol analysis, we assume that digital signatures and hash functions cannot
be forged, and moreover that it is not possible for an adversary to guess secrets of other participants.
“Extension already implemented in routing protocols specification like (Johnson et al., 2001).
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of the node that should acknowledge the reception of n packets and must be
set to (IPp, {(UCp))>. An acknowledgment request option must be ignored
by all the intermediate nodes and must be processed only by D. If D correctly
receives all the n packets for which ACK has been requested, it processes the
request by sending back to SAddr an authenticated acknowledgment, whose
structure is the following:

ACK Opt: << {type, len,id, S Addr, DAddT,path}pk51 >>

where type specifies this is an acknowledgment option, len is the length of
the option, id = n is the number of packets that are acknowledged as re-
ceived. SAddr is the address of the node originating the acknowledgment, i.e.,
(IPp,h(UCp)). DAddr is the address of the node to which the acknowledg-
ment is to be delivered, i.e., (IPs, h(UCs)). With respect to routing proto-
cols specification such as (Johnson et al., 2001), we have added the extension
path, i.e., the sequence of addresses as in the DSR Source Route Option in the
header of the received packets. Here, path =(I1 P4, h(UCy)), (I P, h(UCR)),
(IPCa h(UCC))

Since ACKs have smaller size than control and data packets, we assume
that the nodes co-operate in sending ACKs back to the source. Further, given
that S does not update its CT until it receives the proof that the packets have
been delivered to their destination, it appears reasonable to assume that the
intermediate nodes, that have already forwarded the packets, will cooperate in
forwarding back to S the ACK.

If a node stops forwarding packets within a block, D never acquires the
last packet, and it does not send back the ACK. As a consequence, the well-
behaved nodes are never awarded by S. Possible patches to this drawback are:
i) when D stops receiving packets, it notifies the anomaly to S, by sending an
alert message (possibly over multiple routes); ii) an upper bound gap to the
block size may be fixed. Thus, the intermediate nodes will not forward more
than gap packets (i.e., the limit we gave at the beginning of this section).

Like control and data packets, ACKs may be lost because of link breaks. We
deal with this matter as follows: provided that D has in its Route Cache multi-
ple routes to S, ACKs can be sent over all the available routes to S. Again, we
assume to send (and forward) ACKs to be less power consuming than sending
(and forwarding) data packets.

5.2 On the transfer of credits.

In the model we have presented, credits gained by node X can be spent
only with the node for which X has forwarded something, say A. Intuitively,
systems based on such rules can get stuck. We consider an established route

5The last field can be included as additional data in the Acknowledgment Request option in routing protocols
specification like (Johnson et al., 2001).
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A-B-X-C-D from source A to destination D. We know that if an intermediate
node, say X, behaves correctly in forwarding packets for A, then it can rea-
sonably rely on A for subsequent transmissions originated by X, when these
transmissions involve routes including A. On the other hand, suppose X starts
sending packets through route X-Y-W-Z and furthermore suppose that condi-
tion creds — debs < gapc is not fulfilled either for Y, or W, or both of them.
In this case, X appears unable to correctly deliver packets to its destination.

Thus, we propose the notion of credits transferring, according to which X
may rely on nodes not involved in the current route, say R, but likely willing to
forward packets for X, for transfer their credits to the nodes in R. In particular,
X will collect information regarding the nodes, in R, that are debtors to the
nodes in X table for which it holds creds — debs < 0, meaning that X has
made more favors to those nodes than they have made to X.

Credit transferring protocol. We consider three entities, namely: X, will-
ing to send n packets over route R; A ¢ R, that is a X first-hand debtor (i.e.,
A might accept to forward a certain number of packets for X); B € R, that is
a X second-hand debtor (i.e., B might accept to forward a certain number of
packets for A).

1) X — B :{Xfhdlist, X, B,n,noncex}pk;

2) B —- X :{A B X,m, nonceX}pk_1 m<n
B

3 X - A {{A,B,X,m,noncex}pkgl}pk;

4) A — X :{noncex, yes}pkzl

5 X — B : {{TLOTLCCX,Z/@S}pk;‘I}pk)—(l

The messages are signed by the private key of the sender. We assume that
a special tag is contained in each message, to determine the message’s step in
the protocol. In message 1, X asks B if it agrees to accept a transfer of n credits
from a node belonging to the list of X first-hand debtors. In particular, B should
indicate who, among the nodes in the list, is its creditor. To maintain, in part,
the user’s privacy, items in the list should be hash values of the X first-hand
debtors. The recipient of message 1 first computes the hash of the identifiers
of the nodes to which it owes something, then it compares the hashes. Clearly,
all the nodes processing message 1 may perform the same test, but, if they do
not know those identifiers, X first-hand debtors remain unknown.

B indicates node A as a possible candidate for credit transferring (message
2). Through message 3, X asks A to transfer m < n debits to B. A notifies
the request acceptance to B (message 4). X notifies the credit transferring
acceptance by forwarding message 4.

Provided that the protocol’s participants behave correctly, they update their
CT tables upon the reception of the messages. Updating CT tables is as re-
ported in the scheme. In particular, X should refresh its table, as shown in
Table # 1, upon receiving message 4 (meaning: X will not consider A as its
debtor anymore, at least as far as m packets are concerned). In its turn, A re-
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freshes its table, as shown in Table # 2, upon receiving a receipt that message 4
has been delivered to destination X. We rely on ACKs to convey receipts.

Upon reception of message 5, B will update its table as shown in Table # 3
(this is how we formalize the credit transferring operation). What appears after
the updating is that in the past A has forwarded for B less packets than the
packets A actually has forwarded, while X has forwarded for B more packets
than the forwarded ones.

When m packets have finally reached their destination, not only X expects
an acknowledgement, but also A. If A receives this proof, it updates its table as
shown in Table # 4, meaning that A will not consider B as its debtor anymore.

Tables # 5 and # 6 show X and B updates, respectively, upon transmission
of m packets. These standard updates follow the rules listed in Section 5.

A credit transferring protocol should be invoked in particular situations, e.g.,
if the network under investigation supports high levels of mobility. We thus
assume that the nodes cooperate in forwarding protocol messages and ACKs
tied to a credit transferring, in order to maintain the basic network functioning,
whereas the network could get stuck.

6. Conclusions

We have proposed to manage information about the forwarding behavior of
the nodes in mobile ad hoc networks. Cryptography makes the information
deduced by each node more reliable. Furthermore, we have proposed a mech-
anism to transfer the knowledge between different nodes. The novelty, w.r.t.
previous mechanisms, is the avoidance of a central authority, the special stress
on secure communication as well as on mechanisms to avoid that a user drops
its identity. We are currently working on simulating the network performance
to validate our approach. As future work, we plan to investigate new forms of

- debs creds debs  creds
ida - creds-m -
- dx debs-m -
idp - creds+m
other 1Ds - -
other 1Ds - - A b o)
X table #1 able
debs creds
ida debs-m - debs creds
1dx debs+m - idp - creds-m
other IDs - - other IDs - -
B table #3 A table #4
Credit transferring
debs creds debs creds
idp debs+m - idx - creds + m
other IDs - - other IDs -

X table #5 B table #6
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credit transferring and routing protocols, based on the information gathered by
users, as well as certificate expiration and key rollover issues.
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Abstract: There are numerous initiatives to use mobile devices as so-called “trusted
pocket signers” to produce electronic signatures. The actual signature is
generated by means of a conventional signature card. The mobile device
serves as the card reader, storage device for the document to be signed and as a
display for the signature application. The operating system used on the mobile
device has thus a pivotal importance to ensure the integrity and accountability
of the electronic signature. Also mobile devices are used to provide mobile
workers with access to the corporate backend. We examined the currently
available mobile operating systems in regard to their security and conclude
that not a single one is secure enough for “trusted” signing and only partially
for secure backend access. We show two possible ways of how to make
mobile devices more secure and possibly to enable something close to “what
you see is what you sign”.

Key words:  Mobile Operating Systems, Trusted Devices

1. INTRODUCTION

Mobile devices are becoming ever more capable and are able to open up a
broader range of applications in professional environments due to their
increasing functionalities. Personal Digital Assistants (PDAs) and
Smartphones allow users to access sensitive personal data at any time and
any place, making it possible to increase productivity. In the case of mobile
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devices carrying sensitive data like patient data, customer lists and address
data, amongst others, the security of these data must be ensured.

Corporations are using mobile devices to enable their mobile workforce to
get access to their backend. Since this company data can be very confidential
the access to the backend must be secure. The WiTness project sponsored
by the European Union [WiTness2004] aims to provide secure
backend access by means of GSM technology. Figure 1 shows an
application scenario where a “pervasive salesman” has secure,
corporate-controlled access to all data available to him in the
corporate information system. Access is controlled by a security
module based on a SIM with additional security functionality.

Paryaglye

Applications communicate with data
services in the corporate network

Applications are federated to facilitéte a
dynaric, efficient “Client Visits”
application

Figure 1: WiTness Pervasive Salesman Scenario [WiTness2004]

But even if the communication and access to the backend are secured, the
mobile device itself remains open to possible attacks. If corporate data is
stored on the device an attacker could try to circumvent the access control
mechanisms of the device in order to get access to the stored data.

There are also some initiatives using mobile devices as so-called “trusted
pocket signers” to produce electronic signatures [MobTra2004]. The actual
signature is generated by means of a conventional signature card (according
to the EC-Directive [EC_esig1999]). The mobile device serves as the card
reader, storage device for the document to be signed and as a display for the
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signature application. Therefore, it must be ensured that the data shown on
the display is identical with the data signed by the signature card
(WYSIWYS)'. The operating system used on the mobile device has thus a
pivotal importance to ensure the integrity and accountability of the digital
signature.

If the authorization mechanisms, memory protection, process generation and
separation or protection of files in an operating system are flawed, an
attacker may gain access to the different internal processes. He might take
advantage of this situation to generate forged signatures.

Figure 2: Manipulated digital signature [Federr2003]

Figure 2 illustrates that application 1 as a malicious program can intercept
the PIN, for example. An even considerably higher risk exists, however, if
the malicious application changes the data to be signed after they are
displayed to the user. Due to the virtually unrestricted hardware access, a
malicious program is able to manipulate all data transmitted to the signature
application before the actual signature takes place.

We examine the current available mobile operating systems in regard to their
suitability for both scenarios. Using the mobile device as a trusted pocket
signer poses the hardest security requirements (especially in regard to
accountability and integrity). From a business perspective the confidentiality
of the corporate data seems to be the most important protection goal.

In section 2, operating systems that are currently available on the market are
examined, and some important security flaws are pointed out. Section 3
presents a glance at the future and examines how these problems can be

' What You See [s What You Sign
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solved by means of software or hardware solutions. In section 4, the results
obtained are summarized.

2. SECURITY ANALYSIS OF CURRENT MOBILE OS

2.1 PocketPC

PocketPC [Pocket2004] does not provide the possibility to encrypt data.
Even the internal communication is not secured. Due to its design, PocketPC
neither separates memory blocks nor applications effectively from each
other. Each application can adjust its priorities, terminate other applications,
access their memory or prevent the switchover into the power-save mode.

Passwords can be deactivated by the user and are frequently deactivated in
the standard setting. Also, an attacker can easily take out the external storage
medium from the device and steal the data that is stored there. Even worse is
the possibility to port malware onto the PDA in this way. This malware
could later fake a signature as shown above.

Fake dialogs are possible because of malware. But even an uninfected PDA
with PocketPC allows fake dialogs. As the Microsoft operating system
supports Active X and Java, these can be used to create fake dialogs.

fniernet

Internes Netmwerk

Figure 3: Mobile code attack scenario [FoxHor1991]

1. The user loads the applet (Java) or control (ActiveX) from a web
server, which is then executed on the customer’s mobile device.
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2. The applet/control makes use of the owner’s authorizations to gain
access to the company’s database, and copies data onto the mobile
device.

3. The applet/control sends the data obtained back to the Internet
server.

In case of a Java applet, the so-called sandbox restricts the applet’s access to
the hardware and software. However, the user may have granted the applet
too many rights, or an attacker may use one of the many security gaps in the
Java virtual machine. The user’s security may be protected by a code-
signing mechanism, with which the origin of programs can be certified.
However, with this mechanism, only the origin of a program can be
determined, but the actual contents can be harmful. But since the
administration of certificates is not possible with PocketPC, any form of
mobile code must be deactivated in the setting.

There is a theoretic possibility of hidden backdoors in PocketPC, as the
source code is not open. A protection from buffer overflows and against the
manipulation of the DMA functionality cannot be provided by means of
additional software. Manipulated programs are able to act with all user
authorizations, as there is no distribution of rights. PocketPC 2002 exhibits a
large number of security gaps which cannot be closed completely by means
of additional security software, such as PDA Secure [PDASe2004] or PDA
Defense [PDADe2004]. Due to these security risks, PocketPC cannot be
used as an operating system for a “trusted” pocket signer. Even for the
scenario of the WiTness Pervasive Salesman in Figure 1, PocketPC should
not be used. The impossibility of deactivating or bypassing passwords is an
essential feature for this scenario. Furthermore, certificate management is
necessary. Certificate management can’t even be reached with additional
software, which shows that PocketPC is only secure enough for private
usage.

2.2 PalmOS

Like PocketPC, PalmOS [Palm2004] does not have an effective distribution
of rights and separation of processes. There is no secure path between the
applications and the kernel, and the communication is vulnerable.
Furthermore, the user, as with all operating systems, cannot check if the
status of the device is secure. This could be achieved by means of an LED,
for example, which indicates if the PDA is in a secure stadium after
examination. A more detailed description will be given in section 3.
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If an attacker gains possession of the activated device, he can synchronize it
with any PC and install malware. Passwords, too, are protected
unsatisfactorily in PalmOS. As the source code is not open in PalmOS either,
there is a possibility of hidden backdoors. Mobile code can be executed by
means of Java on the mobile device so that the “mobile code attack
scenario”, as shown in Figure 2, applies as well. Palm does not support a
certificate management system either so that a manipulated certificate would
not be recognized.

Direct memory access is supported by PalmOS through the support of ARM
and DragonBall processors.

A manipulated program has the possibility to act with all user authorizations.
Just as for PocketPC, security software, such as PDA Secure or PDA
Defense, is available. But even if these are applied, there are still security
risks that do not make it possible to employ PalmOS as a secure operating
system for electronic signatures.

PalmOS shows similar security holes as PocketPC 2002. Without additional
software there is no possibility to secure the passwords. Further more there is
no certificate management. This points out that PalmOS, like PocketPC, is
not secure enough for the Pervasive Salesman Scenario. Due to these risks,
PalmOS like PocketPC cannot be used as an operating system for a “trusted”
pocket signer.

23 Symbian

Symbian [Symbian2004] as an operating system provides better protection
than PalmOS and PocketPC 2002. The device can be administered in the
corporate network by means of an access control list. By using this list,
certain contents can be protected from being accessed by other device
management servers so that the data can only be synchronized with a certain
server.

So far, no major security gaps are known for the operating system. However,
with the Nokia Wintesla maintenance program [UCable2003], far-reaching
interventions in the mobile device are possible, even when it is blocked. The
attacker obtains full access to all setup options of the device, can unblock it
with the knowledge gained and has full access to the stored data. Any
security claims for Nokia devices are thus reduced to absurdity.

Mobile code and thus fake dialogs are possible due to the support of Java. In
contrast to PalmOS and PocketPC, certificate management is installed as a
protection against forged certificates. But the user cannot check the security
status of the device and has hardly any possibility to install additional
security software on the device.
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Symbian devices are thus not suited to generate qualified signatures, as there
are security gaps, such as a lack of process separation, and especially since
there are tools that are able to bypass any security instruments in Symbian.
Without the problem of the Wintesla Tool, Symbian provides more security
features than PalmOS or PocketPC. With the features of the access control
list and the support of certificate management Symbian supports the scenario
of the Pervasive Salesman. But even with the better protection of the saved
data, Symbian is by far not secure enough for the “trusted pocket signers”
scenario.

24 Linux

The Linux operating system provides the user with the largest number of
security functions from the operating systems presented so far. Due to the
possibility of determining permissions for processes, data, etc., a better
protection of the data against misuse is ensured. However, there are still
numerous security gaps, such as the DMA functionality, which has to be
deactivated manually, or the possibility of performing synchronizations
without authentication. Furthermore, there are viruses and worms, even if
not directly for mobile Linux distributions. It is clear, however, that these are
endangered as well, and protection, for example, by means of rights
distribution and against buffer overflows is not sufficient. In addition,
virtually no additional software is available for Linux-operated devices so
that an additional protection cannot be installed. Also, there are too few
Linux devices, and changing from the existing operating system to Linux is
time-consuming and risky.

The SUSE distribution in combination with the IBM server was thus only
graded EAL2 by the German Federal Office of Security in Information
Technology [BS12003]. PDAs with a distribution built on the standard kernel
therefore cannot generate sufficiently secure signatures that would make
them legally equivalent to the hand-written signature.

Linux provides the best security features for mobile devices. But as
described above, Linux could not provide a totally secure area for a “trusted
pocket signer”. This is pointed out by the decision of the BSI [BS12003]. But
with the implementation of many security features, Linux is the most secure
conventional operating system and supports the Pervasive Salesman
scenario.
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3. POSSIBLE SOLUTIONS

The two following suggestions for a solution are in their development stages
and can presently only be used to a limited extent. Nonetheless, they will
provide a better protection of the PC and/or mobile device in the future. The
objective of these approaches is to protect the internal processes by means of
a strict distribution of permissions in the lowest layers. Only by a system-
wide separation of memory, access and input/output rights for processes and
applications can a system be protected against any kind of malicious
programs. By not giving malicious programs all user rights as in current
systems, the solutions presented seek to minimize the risk of damage. Above
all, the user for the first time has the possibility to check if the computer is in
a seccure state and if he is communicating securely with the kernel. This is
not possible in current systems.

3.1 Perseus

Perseus is an open source project at Saarland University [Perseu2004]. It is
aimed at developing a small microkernel as a secure platform. In addition,
the user interface shows the user securely what status the system is in,
without a malicious program being able to manipulate it. Generally, a kernel
is responsible for the administration of the device, files, memory and
processes and is loaded directly after booting. The Perseus kernel is aimed at
protecting security-critical applications by isolating the individual processes
from each other. Perseus is based on the approach that a normal operating
system runs like an application, and therefore the Perscus kernel lies below
the operating system in the layer architecture. Only by being embedded
below the operating system, which is still needed, can Perseus permit
isolated processes to take place system-wide between the applications.
Isolated processes are not possible for applications within the standard
operating system, however, but only between the individual “secure
applications” and the Perseus operating system.
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Figure 4: System Architecture Perseus [Perseu2004]

In the Perseus prototype, the trustworthy user interface reserves a line in the
upper section of the screen that is permanently under the control of the
security kernel.

As the line or LED is under the sole control of Perseus, it cannot be misused
by a compromised operating system. If the display indicates that the user is
communicating with the Perseus kernel, the control of the display and
keyboard solely lies with the security kernel.

3.2 Trusted Platform Module

The “Trusted Platform Module” (TPM) was specified by the “Trusted
Computing Group (TCG)”, formerly “Trusted Computing Platform Alliance
(TCPA)” [TCPA2004].

The TCG hardware consists of two tamper resistant modules called TPM and
CRTM (Core Root of Trust for Measurement). Both of them will only be of
use if an operating system is used that supports them. Currently there are two
operating systems being developed that will support TCG hardware.
Microsoft is developing a security technology called NGSCB (Next
Generation Secure Computing Base) that will be included in the Longhorn
operating system and there are also initiatives to develop a Linux distribution
that supports the TCG security modules [MaSmMaWi2003].
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The TPM hardware module can be regarded as an extended smart card on
which secrets inside and outside of the TPM can be produced and stored
[Pearso2002]. These secrets are symmetric and asymmetric keys that are
used to ensure the trustworthiness of files, signing of data and the
authentication of third parties on the platform. Furthermore, hash values are
examined to identify the trustworthy hardware and software components and
are stored in data integrity registers. For TPM to be active its hardware must
be switched on and the software activated.

For each component (BIOS, OS-Loader and Operating System) a hash value
is generated and transmitted to the TPM when the system is started. These
values are stored in the “platform configuration register”. It is then examined
if the currently established hash values are identical with those stored on the
‘TPM. If this is the case, the user can assume that the components and/or the
data stored on them have not been manipulated, as otherwise the hash value
would have changed and the system or the software would have informed
the user. This way an authentication chain is established starting with the
CRTM.

The operating system can then build a trusted space (i.e. the “nexus” of
NGSCB) for security critical applications in which the applications are
separated from each other, and any access from the outside into the “trusted
space” is prevented. Uncertified programs, such as a virus or Trojan Horses
do not have access to the trusted space.

4. CONCLUSION

The mobile operating systems available today are not suited to produce
legally binding electronic signatures. None of the operating systems support
secure input/output of the data. In addition, there are still a large number of
open security gaps in these operating systems.

The producers of operating systems will have to implement the solutions
offered with Perseus and the TCG in future versions or develop comparable
solutions. Only then will it be possible to use mobile devices to a larger
extent than now, and also employ them in security critical areas.

Until then, the use of mobile devices will continue to be connected with
enormous security risks and will require careful consideration. Above all,
however, the use of additional software, such as PDA Defense, is highly
recommended at the moment, as this eliminates at least a large part of the
security risks. The use of a large amount of security software, however, is
too demanding for the average user, causes additional costs and is connected
with high administrative effort.
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Abstract: . Mobile agents are programs that travel autonomously through a computer
network in order to perform some computation or gather information on behalf
of a human user or an application. In the last several years, mobile agents have
found numerous applications including e-commerce. In most applications, the
security of mobile agents is of the utmost importance. This paper gives an
overview of the main security issues related to the mobile agent paradigm.
These issues include security threats, requirements, and techniques for keeping
the mobile agent platform and the agent itself secure against each other.

Key words:  Security, Mobile agents, Mobile code, Malicious host, Electronic commerce.

1. INTRODUCTION

During the last several years, we have witnessed fundamental changes in
distributed and client-server computer systems. In the past, software
applications were bound to particular nodes in computer networks. This
reality has changed with the appearance of mobile agents [1], that is,
programs that act in a computer network on behalf of a human user or an
application. Agents can travel autonomously among different nodes in the
network, in order to perform some computation or gather information [2]. In
this paradigm, clients do not need to have a network connection established
while their agents are performing operations on different servers. As such,
they provide an appealing alternative to the client-server architecture for
many applications [3].

The applications of mobile agent technology are abundant and include
electronic commerce, personal assistance, distributed information search and
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retrieval, monitoring, network management [4], real-time control, building
middleware services, military command and control [5], and parallel
processing. The promises made by this technology can hardly be overstated.
There are numerous advantages of using the mobile agent paradigm rather
than conventional paradigms such as client-server based technologies. Using
a mobile agent paradigm reduces network usage [2], dynamically updates
server interfaces, improves fault tolerance [6], introduces concurrency [2],
and assists operating in heterogeneous environments [4].

On the other hand, mobile agent technology has some limitations,
primarily in the area of security. These limitations have raised many
concerns about the practical utilisation of mobile agents. Current research
efforts in the area of mobile agent security adopt two different points of
view. Firstly, from the platform perspective, we need to protect the host from
malicious mobile agents such as viruses and Trojan horses that are visiting it
and consuming its resources. Secondly, from the mobile agent point of view,
we need to protect the agent from malicious hosts. Both points of view have
attracted much research effort. This paper gives an overview of the main
solutions that have been described in the literature to keep the mobile agent
platform and the agent itself protected from each other.

The paper is organized as follows. Section 2 deals with the security
issues related to the mobile agent paradigm such as security threats and
requirements. Section 3 gives an overview of the main solutions for keeping
a mobile agent platform secure against a malicious mobile agent. Similarly,
Section 4 presents a set of solutions for ensuring the security of mobile
agents against illegitimate platforms. Finally, Section 5 gives some
concluding remarks.

2. SECURITY ISSUES IN THE MOBILE AGENT
- PARADIGM

The mobile agent paradigm appeals to many specialists working in
different applications. This is especially true for e-commerce applications,
including stock markets and electronic auctions. Such applications involve
dealing with vast amounts of money and thus users will hesitate to use
mobile agents unless they feel that they are secure and can be trusted.
Therefore, the security of mobile agents is an important issue that has
triggered much research effort in order to find a suitable solution.

One of the most valuable characteristics of mobile agents is their
mobility that enables them to travel autonomously through the network.
However, it is precisely because of this property that mobile agents are
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exposed to different types of attacks. We next present these attacks, together
with those that are launched by agents to harm platforms.

Unauthorized Access. Malicious mobile agents can try to access the
services and resources of the platform without adequate permissions. In
order to thwart this attack, a mobile agent platform must have a security
policy specifying the access rules applicable to various agents, and a
mechanism to enforce the policy.

Masquerading. In this attack, a malicious agent assumes the identity of
another agent in order to gain access to platform resources and services, or
simply to cause mischief or even serious damage to the platform. Likewise, a
platform can claim the identity of another platform in order to gain access to
the mobile agent data. In both cases, the malicious agent or platform will not
receive any blame for its potentially detrimental actions. Instead, the
unsuspecting agent or platform whose identity was misused will be held
responsible [2,4].

Denial of Service. A malicious platform can cause harm to a visiting
mobile agent by ignoring the agent’s request for services and resources that
are available on the platform, by terminating the agent without notification,
or by assigning continuous tasks to the agent so that it will never reach its
goal. Likewise, a malicious agent may attempt to consume the resources of
the platform, such as disk space or processing time, or delete important files
or even the whole hard disk contents, thus causing harm to the platform and
launching a denial of service attack against other visiting agents [2,4].

Annoyance attack. Examples of this attack include opening many
windows on the platform computer or making the computer beep repeatedly
[2]. Such attacks may not represent a very serious problem to the platform,
however they still need to be prevented.

Eavesdropping. In this attack, a malicious platform monitors the
behavior of a mobile agent in order to extract sensitive information from it.
This is typically used when the mobile agent code and data are encrypted.
Monitoring may include the identity of the entities that mobile agent is
communicating with, and the types of services requested by the mobile agent
[2,4]. '

Alteration. In the alteration attack, a malicious platform tries to modify
mobile agent information, by performing an insertion, deletion and/or
alteration to the agent’s code, data, and execution state. Modifying the
mobile agent execution code and state may result in the agent performing
harmful actions to other platforms, including the agent’s home platform
[2.4].

We next explore the different security requirements that the mobile agent
paradigm needs to satisfy.
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Confidentiality. It is important to ensure that the information carried by
a mobile agent or stored on a platform is accessible only to authorized
parties. This is also the case for the communication among mobile agent
paradigm components.

Integrity. It is essential to protect the mobile agent’s code, state, and data
from being modified by unauthorized parties. This can be achieved either by
preventing or by detecting unauthorized modifications.

Availability. Platforms typically face a huge demand for services and
data. In the case that a platform cannot meet mobile agents’ demands, it
should notify them in advance. Additionally, a platform must be able to
afford a certain level of fault-tolerance and fault-recovery from unpredicted
software and hardware failures [4].

Accountability. Platforms need to establish audit logs to keep track of all
visiting mobile agents’ actions in order to keep them accountable for their
actions. Audit logs are also necessary when the platform needs to recuperate
from a security penetration or a system failure.

Anonymity. As mentioned above, platforms need to keep track of mobile
agents’ actions for accountability purposes. However, platforms also have to
balance between their needs for audit logs and mobile agents’ needs to keep
their actions private [4].

In the next two sections we present the existing techniques for protecting
agents and platforms. These techniques fall into two categories: Prevention
and detection. Prevention techniques are aimed at making it impossible for
platforms and agents to successfully perform an attack. For example, a
tamper-proof device can be used to execute an agent in a physically sealed
environment. However, in the literature the term “prevention mechanism” is
often used to denote a technique that makes it impossible to modify an agent
in a meaningful way [26]. Examples of such techniques include
“Environmental Key Generation” and “Computing with Encrypted
Functions”. On the other hand, detection techniques aim at detecting the
attacks. The “Co-Operating Agents” technique and “Execution Tracing”
belong to this category.

3. SECURITY OF PLATFORMS

The primary issue in the security of mobile agent systems is to protect
mobile agent platforms against malicious attacks launched by the agents.
This section presents a set of detection and prevention techniques for
keeping the platform secure against a malicious mobile agent.
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3.1 Sandboxing

Sandboxing [7] is a software technique used to protect mobile agent
platform from malicious mobile agents. In an execution environment
(platform), local code is executed with full permission and has access to
crucial system resources. On the other hand, remote code, such as mobile
agents and downloadable applets, is executed inside a restricted area called a
“sandbox” [10,11]. Restriction affects certain code operations [9] such as
interacting with the local file system, opening a network connection,
accessing system properties on the local system, and invoking programs on
the local system. This ensures that a malicious mobile agent cannot cause
any harm to the execution environment that is running it. A Sandboxing
mechanism enforces a fixed security policy for the execution of the remote
code. The policy specifies the rules and restrictions that mobile agent code
should confirm to. A mechanism is said to be secure if it properly
implements a policy that is free of flaws and inconsistencies [8].

The most common implementation of Sandboxing is in the Java
interpreter inside Java-enabled web browsers. A Java interpreter contains
three main security components: Classl.oader, Verifier, and Security
Manager [8,11,12,13,16]. The ClassLoader converts remote code into data
structures that can be added to the local class hierarchy. Thus every remote
class has a subtype of the ClassLoader class associated with it [8]. Before the
remote code is loaded, the Verifier performs a set of security checks on it in
order to guarantee that only legitimate Java code is executed [12,13]. The
remote code should be a valid virtual machine code, and it should not
overflow or underflow the stack, or use registers improperly [8,16].
Additionally, remote classes cannot overwrite local names and their
operations are checked by the Security Manager before the execution. For
example, in JDK 1.0.x, classes are labelled as local and remote classes.
Local classes perform their operations without any restrictions while remote
classes should first surrender to a checking process that implements the
platform security policy. This is implemented within the Security Manager.
If a remote class passes the verification, then it will be granted certain
privileges to access system resources and continue executing its code.
Otherwise, a security exception will be raised [8,11,12,13,16].

A problem with the Sandboxing technique is that a failure in any of the
three above mentioned interrelated security parts may lead to a security
violation. Suppose that a remote class is wrongly classified as a local class.
Then this class will enjoy all the privileges of a local class. Consequently,
the security policy may be violated [8]. A downside of the Sandboxing
technique is that it increases the execution time of legitimate remote code [7]
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but this can be overcome by combining Code Signing and Sandboxing, as
will be explained later.

3.2 Code Signing

The “Code Signing” technique ensures the integrity of the code
downloaded from the Internet. It enables the platform to verify that the code
has not been modified since it was signed by its creator. Code Signing
cannot reveal what the code can do or guarantee that the code is in fact safe
torun [14,15].

Code Signing makes use of a digital signature and one-way hash
function. A well-known implementation of code signing is Microsoft
Authenticode, which is typically used for signing code such as ActiveX
controls and Java applets [15].

Code Signing enables the verification of the code producer’s identity but
it does not guarantee that they are trustworthy. The platform that runs mobile
code maintains a list of trusted entities and checks the code against the list. If
the code producer is on the list, it is assumed that they are trustworthy and
that the code is safe. The code is then treated as local code and is given full
privileges; otherwise the code will not run at all. This is known as a “black-
and-white” policy [8,16], as it only allows the platform to label programs as
completely trusted or completely untrusted.

There are two main drawbacks of the Code Signing approach. Firstly,
this technique assumes that all the entities on the trusted list are trustworthy
and that they are incorruptible. Mobile code from such a producer is granted
full privileges. If the mobile agent is malicious, it can use those privileges
not only to directly cause harm to the executing platform but also to open a
door for other malicious agents by changing the acceptance policy on the
platform. Moreover, the affects of the malicious agent attack may only occur
later, which makes it impossible to establish a connection between the attack
and the attacker [8]. Such attacks are referred to as “delayed attacks”.
Secondly, this technique is overly restrictive towards agents that are coming
from untrustworthy entities, as they do not run at all. The approach that
combines Code Signing and Sandboxing described in the next section
alleviates this drawback.

3.3 Code Signing and Sandboxing Combined

Java JDK 1.1 combines the advantages of both Code Signing and
Sandboxing. If the code consumer trusts the signer of the code, then the code
will run as if it were local code, that is, with full privileges being granted to
it. On the other hand, if the code consumer does not trust the signer of the
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code then the code will run inside a Sandbox as in JDK1.0 [17,21]. The main
advantage of this approach is that it enables the execution of the mobile code
produced by untrustworthy entities. However, this method still suffers from
the same drawback as Code Signing, that is, malicious code that is deemed
trustworthy can cause damage and even change the acceptance policy.

The security policy is the set of rules for granting programs permission to
access various platform resources. The “black-and-white” policy only allows
the platform to label programs as completely trusted or untrusted, as is the
case in JDKI1.1. The combination of Code Signing and Sandboxing
implemented in JDK 1.2 (Java 2) incorporates fine-grained access control
and follows a “shades-of-grey” policy. This policy is more flexible than the
“black-and-white” policy, as it allows a user to assign any degree of partial
trust to a code, rather than just “trusted” and “untrusted” [16,17]. There is a
whole spectrum of privileges that can be granted to the code. In JDK1.2 all
code is subjected to the same security policy, regardless of being labelled as
local or remote. The run-time system partitions code into individual groups
called protection domains in such a way that all programs inside the same
domain are granted the same set of permissions. The end-user can authorize
certain protection domains to access the majority of resources that are
available at the executing host while other protection domains may be
restricted to the Sandbox environment. In between these two, there are
different subsets of privileges that can be granted to different protection
domains, based on whether they are local or remote, authorised or not, and
even based on the key that is used for the signature [16,17,18]. Although this
scheme is much more flexible than the one in JDK 1.1, it still suffers from
the same problem, that an end user can grant full privileges to malicious
mobile code, jeopardising the security of the executing platform.

3.4 Proof-Carrying Code

Lee and Necula [19] introduced the Proof~Carrying Code (PCC)
technique in which the code producer is required to provide a formal proof
that the code complies with the security policy of the code consumer. The
code producer sends the code together with the formal safety proof,
sometimes called machine-checkable proof, to the code consumer. Upon
receipt, the code consumer checks and verifies the safety proof of the
incoming code by using a simple and fast proof checker. Depending on the
result of the proof validation process, the code is proclaimed safe and
consequently executed without any further checking, or it is rejected
[4,19,21,22]. PCC guarantees the safety of the incoming code providing that
there is no flaw in the verification-condition generator, the logical axioms,
the typing rules, and the proof-checker [20].
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PCC is considered to be “self-certifying”, because no cryptography or
trusted third party is required. It involves low-cost static program checking
after which the program can be executed without any expensive run-time
checking. In addition, PCC is considered “tamper-proof” as any modification
done to the code or the proof will be detected. These advantages make the
Proof Carrying Code technique useful not only for mobile agents but also for
other applications such as active networks and extensible operating systems
[19,22].

Proof Carrying Code also has some limitations, which need to be dealt
with before it can become widely used. The main problem with PCC is the
proof generation, and there is a lot of research on how to automate the proof
generation process. For example, a certifying compiler can automatically
generate the proof through the process of compilation [19,23].
Unfortunately, at present many proofs still have to be done by hand [21].
Other limitations of the PCC technique include the potential size of the proof
and the time consumed in the proof-validation process [19].

3.5 State Appraisal

While a mobile agent is roaming among agent platforms, it typically
carries the following information: code, static data, collected data, and
execution state. The execution state is dynamic data created during the
execution of the agent at each platform and used as input to the computations
performed on the next platform. The state includes a program counter,
registers, local environment, control stack, and store. The state of a mobile
agent changes during its execution on a platform. Farmer et al [25]
introduced the “State Appraisal” technique to ensure that an agent has not
become malicious or modified as a result of its state alterations at an
untrustworthy platform.

In this technique the author, who creates the mobile agent, produces
a state appraisal function. This function calculates the maximum set of safe
permissions that the agent could request from the host platform, depending
on the agent’s current state. In other words, the author needs to anticipate
possible harmful modifications to the agent’s state and to counteract them
within the appraisal function. Similarly, the sender, who sends the agent to
act on his behalf, produces another state appraisal function that determines
the set of permissions to be requested by the agent, depending on its current
state and on the task to be completed. Subsequently, the sender packages the
code with these state appraisal functions. If both the author and the sender
sign the agent, their appraisal functions will be protected against malicious
modifications. Upon receipt, the target platform checks and verifies the
correct state of the incoming agent. Depending on the result of the
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verification process, the platform can determine what privileges should be
granted to this incoming agent given its current state. Clearly, when the
author and the sender fail to anticipate certain attacks, they cannot include
them in the appraisal functions and provide the necessary protection
[4,24,25].

In addition to ensuring that an agent has not become malicious during its
itinerary, the State Appraisal may also be used to disarm a maliciously
altered agent [25]. Another advantage of this technique is that it provides a
flexible way for an agent to request permissions depending on its current
state and on the task that it needs to do on that particular platform [24,25].
The main problem with this technique is that it is not easy to formulate
appropriate security properties for the mobile agent and to obtain a state
appraisal function that guarantees those properties [24].

3.6 Path Histories

When an agent travels through a multi-hop itinerary, it visits many
platforms that are not all trusted to the same extent. The newly visited
platform may benefit from the answers to the following questions: Where
has the agent been? How likely is it that the agent has been converted to a
malicious one during its trip? To enable the platform to answer these
questions, a mobile agent should maintain an authenticable record of the
previously visited platforms during its travel life. Using this history, the
platform makes the decision whether to run the agent and what level of trust,
services, resources and privileges should be granted to the agent [4,26,27].
The list of the platforms visited previously by the agent is the basis of trust
that the execution platform has in the agent. Typically, it is harder to
maintain trust in agents that have previously visited a huge number of
platforms. Likewise, it is harder to trust the agent whose travel path is
unknown in advance, for example the agent that is searching for new
information and creates its travel path dynamically [27].

The “Path History” is constructed in the following way. Each visited
platform in the mobile agent's travel life adds a signed record to the Path
History. This record should contain the current platform’s identity together
with the identity of the next platform to be visited in the mobile agent’s
travel path. Moreover, in order to prevent tampering, each platform should
include the previous record in the message digest that it is signing [4]. After
executing the agent, the current platform should send the agent together with
the complete Path History to the next platform. Depending on the
information in the Path History, the new platform can decide whether to run
the agent and what privileges should be granted to the agent. The main
problem with the Path History technique is that the cost of the path



68 Mousa Alfalayleh and Ljiljana Brankovic

verification process increases with the path history [4,26,27]. Constructing
algorithms for Path History evaluation is an interesting research area [27].

4. SECURITY OF MOBILE AGENTS

In the previous section, we presented several techniques for protecting
mobile agent platforms against malicious mobile agents. On the other hand,
mobile agents themselves are exposed to various threats by the platforms
they visit.

4.1 Co-Operating Agents

In order to improve the security of mobile agents against the attacks that
are launched by the malicious platforms, the Co-Operating Agent technique
[28,29.,4] distributes critical tasks of a single mobile agent between two
co-operating agents. Each of the two co-operating agents executes the tasks
in one of two disjoint sets of platforms. The co-operating agents share the
same data and exchange information in a secret way. The Co-Operating
Agent technique reduces the possibility of the shared data being pilfered by a
single host. Each agent records and verifies the route of its co-operating
agent [28,29]. Co-Operating Agents can be used to perform e-commerce
tasks or protocols such as the authorization of negotiation, bidding, auction,
electronic payment, etc [29,30].

When the agent travels from one platform to another, it uses an
authenticated communication channel to pass information to its co-operating
agent. The information includes details about the agent's itinerary such as the
last platform visited by the agent, the current platform, and the next platform
to be visited. The peer agent takes a suitable action when anything wrong
occurs, e.g., a platform sends the agent to a wrong destination, or claims to
have received the agent from an incorrect source. However, this technique
has some drawbacks. One of them is the cost of setting up the authenticated
communication channel for each migration. Another drawback is that in the
case of a co-operating agent being killed, it is difficult for its peer to decide
which platform is responsible [4,28,29].

It is worth noting that an assumption made in the Co-Operating Agent
technique, is that only a small percentage of platforms are in fact malicious
and that it is not very likely that both agents will encounter such a host.
However, care should be taken that the two sets of platforms assigned to the
two agents are indeed disjoint, that is, that they never encounter the same
host. This method can easily be extended to more than two co-operating
agents.
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4.2 Execution Tracing

Execution Tracing enables detection of any possible misbehavior by a
platform, that is, improper modification of the mobile agent code, state, and
execution flow. This technique is based on cryptographic traces that are
collected during an agent’s execution at different platforms. Traces are logs
of the actions performed by a mobile agent during its lifetime. Execution
Tracing enables an agent’s owner to check the agent’s execution history and
see if it contains any unauthorized modifications done by a malicious
platform. Each trace contains identifiers of all the statements performed on a
particular platform. In the case that some of the statements require
information from the external execution environment, the trace must also
contain a digital signature of the platform. Such statements are known as
“black” statements. On the other hand, the statements that only use the
values of the agent’s internal variables are called “white” statements [31,32].

The Execution Tracing technique assumes that all the involved parties
own a public and private key that can be used for digital signatures, in order
to identify involved parties. Different parties, such as users and platform
owners, communicate by using signed messages. A platform that receives
the agent and agrees to execute it produces the associated trace during the
agent’s execution. The message that an execution platform attaches to the
mobile agent typically contains information such as the unique identifier of
the message, the identity of the sender, the timestamp, the fingerprint of the
trace, the final state and the trusted third party (which could later be used to
resolve disputes). Later, the owner of the agent may suspect that a certain
platform cheated while executing the agent. If this is the case, the owner will
ask the suspicious platform to reproduce the trace. Finally, the agent’s owner
validates the execution of the agent by comparing the fingerprint of the
reproduced trace against the fingerprint of the trace that is originally
supplied by the suspicious platform [31].

In addition to detection of any modification of the agent performed by a
malicious platform, Execution Tracing also provides a means to protect a
legitimate platform against a malicious agent by obtaining the related traces
from the involved parties. Execution Tracing has some limitations, such as
the potential large size and number of logs to be retained. Another limitation
of this technique is that the owner platform needs to wait until it obtains
suspicious results in order to run the verification process. Also, this
technique is considered to be too difficult to use in the case of multi-threaded
agents [31,32].

A new version of the Execution Tracing technique, proposed by Tan and
Moreau [32,33], modifies the original technique by assigning the trace
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verification process to a trusted third party, the verification server, instead of
depending on the agent’s owner.

When a mobile agent travels to a new platform during its itinerary, a
copy of the agent is submitted to a corresponding verification server. The
visited platform receives the agent and produces the associated execution
trace. Before the agent’s migration from the current platform to a new one,
the current platform forwards the trace to a corresponding verification
server. The verification server simulates the execution of the agent on the
platform by using the corresponding execution trace and the agent’s copy.
The simulation process is repeated for every platform in the agent’s path by
the corresponding verification server, until the agent is sent back to its home
platform. Tan and Moreau [32] provided a detailed protocol of message
exchanges, as well as the formal modeling and verification of the protocol.

Execution Tracing with a verification server does not wait until a
suspicion is raised in order to run the verification process. The verification
here is compulsory and this is an advantage over the original Execution
Tracing technique where the verification process is triggered only by
suspicious results [32]. However, Execution Tracing with a verification
server still suffers from the same limitation as the original technique, that is,
the need to retain a potentially large size and number of logs. Additionally,
each platform chooses a verification server and that might encourage and
facilitate a possible malicious collaboration between a platform and the
server.

4.3 Environmental Key Generation

Riordan and Schneier [34] designed the Environmental Key Generation
technique to be used when a platform wants to communicate with another
platform by sending it a message, yet it only wants the receiving platform to
obtain the message if some environmental condition is satisfied. This can be
achieved by sending a mobile agent carrying an encrypted message. The
encrypted message may include some data and/or executable code. Neither
can the mobile agent precisely predict its own execution at the receiver
platform, nor can the platform foresee the incoming agent task. The agent
will wait at the receiving platform for some environmental condition to
occur. The environmental condition could be, for example, matching a
certain search string. When the environmental condition is met, an activation
key is generated in order to decrypt the enciphered message that the mobile
agent is carrying. Without meeting the environmental condition, the agent is
unable to decrypt its own message [34].

The activation key, which is used to decrypt the agent’s message, could
be hidden inside a fixed data channel. If this data channel is, for example,
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a file system, then the activation key could be hidden in a file or could be the
hash of a certain file name. On the other hand, if the data channel is a mail
message, the activation key could be a string inside this message or a hash of
the message [34].

Environmental Key Generation may suit some applications other than
mobile agents (some of which may even be malicious) including blind
search engines, logic bombs, directed viruses, and remote alarms [34].
Tschudin [35] exploited the idea of Environmental Key Generation for the
purpose of the programmed death of a mobile service, that is, the self-
destruction of a mobile service when it is no longer required [35]. However,
this technique has some limitations. The receiving platform could act
maliciously against the incoming agent. When the environmental condition
is met and the activation key is generated, the platform could modify the
agent to perform a different function, for example, to print out the executable
code instead of running it [4]. Another limitation of the technique is that the
platform may consider it unsafe to execute an encrypted code that is attached
to a mobile agent, as it could be, for example, a virus.

4.4 Non-Interactive Computing with Encrypted
Functions

This technique represents a software solution for protecting a mobile
agent from a malicious executing platform during its itinerary. This is a
cryptographic solution to achieve integrity and privacy of the mobile agent.
Protecting integrity means that the mobile agent is made safe against
tampering by a malicious platform. Achieving privacy means that the mobile
agent can conceal its program (code) when it is executed remotely in an
untrusted environment. In addition to this, a mobile agent can safely
compute cryptographic primitives on a remote platform by using this
approach. An example of cryptographic primitives is a digital signature or
encryption.

This technique is based on executing a program embodying an encrypted
function on a mobile agent platform. It also ensures that the platform does
not learn anything substantial about the encrypted function. Abadi and
Feigenbaum [38] suggested the initial version of this technique. Their
solution was interactive and required several rounds of message exchange
with the agent’s home platform. However, the interactive solution does not
suit the mobile agent scenario, as agents operate autonomously without
much interaction with their home platform.

Sander and Tschudin [36,37] suggested a non-interactive solution, which
is suitable for the mobile agent paradigm. In their solution, the home
platform has an algorithm to compute a function f. The target platform has
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an input x and can provide a service to the home platform by computing f{x).
However, the home platform doesn’t want the target platform to learn
anything about the function f. The home platform launches the operation by
encrypting the function f'to get E(f), and then it implements E(f) using the
program P(E(f)). The home platform embeds the program P(E(f)) within the
mobile agent and sends it to the target platform for execution. The target
platform receives the agent and runs it. This includes executing P(E(f)) at x
to produce P(E(H))(x). Then, the target platform sends the agent back to its
home platform. The home platform extracts the result from the agent and
then decrypts it to get f{x).

This solution enables the owner of the agent to execute encrypted
programs over untrusted platforms. The executing platforms do not need to
decrypt programs before running them. Assume that f is an encryption
algorithm or a signature algorithm that contains an embedded key within it.
That means that the agent has the ability to encrypt information or sign it
without revealing anything about the value of the key being used.

The main challenge in this technique is to find a way to apply it to an
arbitrary function £. At the moment the only classes of functions for which a
suitable encryption is known are polynomial and rational functions [36,38].
Although this technique protects the mobile agent’s integrity and privacy, it
is vulnerable to certain attacks such as denial of service and replay attacks
[36].

4.5 Obfuscated Code

Obfuscation is a technique in which the mobile code producer enforces
the security policy by applying a behavior-preserving transformation to the
code before it sends it to run on different platforms that are trusted to various
degrees [39]. Obfuscation aims to protect the code from being analysed and
understood by the host. Consequently, the host should not be able to modify
the mobile code’s behavior or expose sensitive information that is hidden
inside the code such as a secret key, credit card number, or bidding limits
[39].

Typically, the transformation procedure that is used to generate the
obfuscated code aims to make the obfuscated code very hard to understand
or analyse by malicious parties. There are different useful obfuscating
transformations [40,43,44]. Layout Obfuscation tries to remove or modify
some information in the code, such as comments and debugging information,
without affecting the executable part of the code. Data Obfuscation
concentrates on obfuscating the data and data structures in the code without
modifying the code itself. Control Obfuscation tries to alter the control flow
in the code without modifying the computing part of the code. Preventive
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Obfuscation concentrates on protecting the code from decompilators and
debuggers.

Hohl [41] suggested using the Obfuscation technique to obtain a time-
limited black box agent that can be executed safely on a malicious platform
for a certain period of time but not forever. D’Anna et al [39] pointed out
that Obfuscation could delay, but not prevent the attacks on agent via reverse
engineering. They also argue that an attacker with enough computational
resources, such as enough time, can always deobfuscate the code. Barak et al
[42] studied the theoretical limits of Obfuscation techniques and showed that
in general achieving completely secure Obfuscation is impossible.

In addition to protecting a mobile agent, Obfuscation can also be used for
other applications such as protecting digital watermarking, enforcement of
software licensing, and protecting protocols from spoofing [39,40]. As far as
the performance is concerned, some Obfuscation techniques reduce the size
of the code and thus speed up its execution (Layout and Data Obfuscation),
while others achieve the opposite (Control Obfuscation) [43]. Obfuscation is
considered resistant to impersonation and denial of service attacks [40]. The
main challenge in this technique is to make it easy to apply in practice.

4.6 Partial Result Encapsulation

Partial Result Encapsulation (PRE) is a detection technique that aims to
discover any possible security breaches on an agent during its execution at
different platforms. PRE is used to encapsulate the results of agent execution
at each visited platform in its travel path. The encapsulated information is
later used to verify that the agent was not attacked by a malicious platform.
The verification process can be done when the agent returns to its home
platform or at certain intermediate points in its itinerary.

The PRE technique has different implementations. In certain scenarios,
the agent itself performs the encapsulation, while in others the platform does
it. To meet certain security requirements such as integrity, accountability,
and privacy of the agent, PRE makes use of different cryptographic
primitives, such as encryption, digital signatures, authentication codes, and
hash functions.

To ensure the confidentiality of its results, the agent encrypts the results
by using the public key of its originator to produce small pieces of ciphertext
that are decrypted later at the agent’s home platform using the corresponding
private key. This is one scenario of PRE where the agent itself does the
encapsulation process. The agent uses a special implementation of
encryption called “Sliding Encryption” that was suggested by Young and
Yung [45]. Sliding Encryption encrypts small amounts of data within a
larger block and thus obtains small pieces of ciphertext. Sliding Encryption
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is particularly suitable for certain application where storage space is valuable
such as smartcards [46].

Yee [47] suggested “Partial Result Authentication Code” (PRAC), where
again the agent does the encapsulation of the results. However, the agent’s
originator also takes part in this scenario by providing the agent with a list of
secret keys before launching it. For each visited platform in an agent’s
itinerary, there is an associated secret key. When an agent finishes an
execution at a certain platform in its itinerary, it summarizes the results of its
execution in a message for the home platform, which could be sent either
immediately or later. In order to produce the PRAC, the agent uses the
associated secret key for the current platform to compute a Message
Authentication Code (MAC), which is encapsulated together with the
message to produce PRAC. It is important to note that the agent erases the
used secret key of the current visited platform before its migration to the
next platform. Destroying the secret key ensures the “forward integrity” of
the encapsulation results. Forward integrity [47] guarantees that no platform
to be visited in the future is able to modify any results from the previously
visited platforms, as there is no secret key to compute the PRAC for these
results. Only the agent’s originator has a copy of all used secret keys and
thus can verify the encapsulated results. The result verification enables the
originator to detect any modification (tampering) of the agent’s results. Yee
[47] suggested that the results could also be encrypted using the originator’s
public key, in order to guarantee both privacy and integrity.

Kartjoth et al [48] proposed a “strong forward integrity”, which, in
addition to forward integrity, also requires that the visited platform cannot
later modify its own results. Karjoth et al’s approach depends on the visited
platform doing the encapsulation process instead of the agent doing it. The
visited platform encrypts the agent’s results by using the originator’s public
key to ensure the confidentiality of the results. Then the visited platform uses
its private key to digitally sign the encrypted results together with a hash
chain. The hash chain links the results from the previous platform with the
identity of the next platform to be visited. This prevents the platform from
changing its results later and thus ensures strong forward integrity [48].

S. CONCLUSION

- The mobile agent system is a very promising paradigm that has already
established its presence in many applications including e-commerce and
distributed information search and retrieval. At the same time, this
technology has introduced some very serious security problems and
emphasized some existing security issues. It is more difficult to ensure
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security in the mobile agent paradigm than in some other technologies where
hardware solutions are practical.

In this paper we surveyed the main issues in the security of mobile
agents. We considered both the mobile agent and the agent platform points
of view, and reconfirmed that it is much more difficult to ensure the security
of mobile agents than the security of agent platforms. We discussed the
security threats and requirements that need to be met in order to alleviate
those threats.

We presented the most important techniques for providing security in
mobile agent systems. Some of those techniques, for example Sandboxing,
have been used for a long time and are well understood. On the other hand,
some other techniques, such as Computing with Encrypted Function are still
at the theoretical level and are not yet widely used in practice. None of the
existing techniques provides an optimal solution for all scenarios. For
example, Sandboxing provides a high level of security but is overly
restrictive as only a very few applications can operate in such a constrained
environment. However, a combination of various techniques may yield
powerful solutions. For example, in Java 2 Sandboxing has been used in
combination with fine-grained access control and Code Signing. In any
case, more research is needed in order to warrant sufficient trust in mobile
agent technology by a wide range of users.
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1.

Smart card secure channel protocols based on public key cryptography are not
widely utilised mainly due to processing overheads introduced in the
underlying smart card microprocessors and the complexities introduced by the
operation of a PKI infrastructure. In this paper we analyse the significance of
public key secure channel protocols in multi-application smart cards. We
believe that multi-application smart card technology (e.g. the GlobalPlatform
smart card specification) should benefit more from the advantages of public
key cryptography specifically for the initiation and maintenance of a secure
channel. This paper introduces a public key based cryptographic protocol for
secure entity authentication, data integrity and data confidentiality. The
proposed secure channel protocol uses a combination of public key, secret key
and the main idea behind the Diffie-Hellman key establishment protocols in
order to achieve the desired goals. )

Secure channel protocol, public key cryptography, Diffie-Hellman,
GlobalPlatform, Java card, multi-application smart cards

INTRODUCTION

The recent introduction of multi-application smart cards has enabled
cards to securely host multiple applications, dynamically and securely
download or delete them at any point during the card’s lifecycle. As a result,
the complexity of the smart card operating system (SCOS) increased
exponentially. Similarly, the complexity of the terminal applications
increased significantly as new architectures [I, 2] emerged. Furthermore, as
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smart card technology evolves, the performance of smart card cryptographic
algorithms improves and as new smart card applications are invented the
benefits of public key cryptography are widely scrutinized.

Multi-application smart card technology can benefit from the use of
public key cryptography both at the application level and in the SCOS level
e.g. with the provision of secure channel protocols based on Public Key
Infrastructures (PKI). Current versions of secure multi-application smart
card standards [6] do not fully take into advantage the benefits of public key
cryptography, specifically for the provision of a secure channel mechanism.
The reasons range from the increased prices due to the additional processing
power, up to the potentially limited performance of public key cryptographic
primitives in the current generation of smart card microprocessors, or simply
because there is no immediate need for such functionality.

The advantages and disadvantages of public key cryptography are widely
documented in the academic literature [3, 4, 5]. In this paper we propose a
public key secure channel protocol for smart cards. The protocol is based on
the well known Diffie-Hellman key exchange protocol and it was designed
by taking into account the processing and storage restrictions of current
smart card microprocessors. Alongside with the protocol description we also
provide a discussion on the operation and security requirements for its
successful and efficient operation. We believe that as the number of smart
card applications increases and the nature of smart card applications changes
along with the differentiations on the operational requirements (e.g. dynamic
application downloading and deletion), the demand for efficient smart card
PKI will potentially increase.

The remainder of this paper is organised as follows. Firstly, we set up the
scenery by elaborating more on the motivation behind the paper along with
providing an overview of the main characteristics of a multi-application
smart card standard, namely GlobalPlatform [6]. Subsequently, we highlight
the main characteristics of the supporting public key infrastructure required
for the successful operation of the protocol. Moving to the core idea of this
paper we present the protocol details and architectural design. In order to
provide a more complete coverage of the issues surrounding the
implementation and operation of the proposed architecture we also provide a
discussion around the security properties of the protocol by highlighting
practical issues that imposed certain design decisions and directions for
further research.

2. PUBLIC KEY SMART CARD SECURE CHANNEL
PROTOCOLS AND THE REAL WORLD

In the following sections we provide an overview of limiting factors
along with the driving forces behind the adoption of public key cryptography
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in multi-application smart card platforms. Similarly, we also highlight the
main characteristics of a widely used multi-application smart card standard
in order to provide a reference point, to the specifics of an existing
architecture, along supporting the case for the existence of such a protocol.

Motivation

The advantages and disadvantages of public key cryptography have been
a topic of discussion for many years. The significance of public key
cryptography in smart cards, impose certain restrictions and complexities
that are unique to smart card microprocessors and the nature of the
infrastructures they operate.

A few years ago the main prohibiting factor for the utilization of public
key cryptography in smart card microprocessors was the limited processing
power of the underlying technology. However, following a number of
significant improvements both at the hardware [24] and software level [20,
21, 22], the performance of public key cryptography in smart - card
microprocessors has improved significantly. Furthermore, the cost of a
smart card microprocessor is not substantially influenced by the existence of
the necessary public key functionality but rather from other factors (i.e.
mainly the amount of memory).

The nature of smart card applications is also changing. Public key
cryptography may be beneficial for the establishment of a secure channel
when two unknown parties want to establish keys and protect subsequent
communications. Such secure channels could be used for personalisation.
Another use secure channels are post issuance operations, such as
application/card management functions [6], protection of application or
smart card operating system (SCOS) data [25].

Although the significance of public key cryptography in a smart card
environment cannot be underestimated at the same time the drawbacks are
not minimal. For example, a secure channel protocol designed specifically
for smart cards has to be as lightweight as possible, depending of course on
the underlying security and operational requirements. Furthermore, in order
to improve the required performance and fulfil the security objectives a
combination of cryptographic primitives and algorithms might be used.
Finally, further constraints arise from the fact that often a public key based
architecture requires the existence of a public key infrastructure (PKI) [26]
for the management of identities, key and certificate management, etc.

Our proposed protocol aims to fulfil some of the aforementioned
requirements. It is designed by keeping in mind the performance
requirements and operational characteristics of smart card microprocessors.
Although there is a plethora of public key cryptography secure channel
protocols [3, 5, 33], most of them are not specifically designed by taking into
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account the specific characteristics of smart cards. For example, some
cryptographic protocols although they offer more than adequate levels of
security they do not keep in mind that smart card microprocessors have
limited communication buffers, often ranging between 240-255 bytes.
Therefore, if a protocol requires a large number of messages (e.g. key
certificates) to be exchanged between the card and an off-card entity this will
add to the communication and processing overheads [32]. Furthermore, the
nature of a public key infrastructure requires the existence of cryptographic
key certificates. For example, if a protocol requires regular checks in order
to identify whether certificates are revoked or expired this might add to
overall protocol security but on the other hand it will potentially complicate
its mitigation in smart card environment.

The proposed solution does not claim to introduce a protocol based on
new cryptographic techniques. Instead it is an implementation adaptation of
existing cryptographic primitives and techniques which are carefully
selected in order to be used in a smart card environment. Before moving
into the details of the proposed architecture, we highlight the main
characteristics of a multi-application smart card platform.,

An Overview of GlobalPlatform Card Specification

In this section we highlight the main characteristics and the core
components of the GlobaiPlatform (GP) card specification [6], as a typical
example of a multi-application smart card architecture that could benefit
from the proposed protocol. Please note that among the main reasons behind
the description of the GlobalPlatform architecture is that it provides the
necessary functionality (e.g. secure storage of keys, key management, etc.)
required by the protocol. However there are no restrictions or prerequisite
for a specific type of smart card technology as the protocol could be utilised
and implemented either at the application or at the (SCOS) [7, 8] level
irrespectively of the characteristics of the underlying smart card
microprocessor.

The GlobalPlatform smart card architecture comprises a number of on-
card components that offer secure multi-application card management
functionality at any given point during the card’s lifecycle. Furthermore, the
GlobalPlatform smart card architecture is closely coupled with the Java card
[9] technology although there are no restrictions on its portability to other
smart card platforms [10, 11].

The functionality provided by the underlying smart card management
system includes the necessary mechanisms (e.g. secure channels [12]) that
enable secure communication with the outside world. A secure channel is a
mechanism that allows a card and an off-card entity to authenticate each
other and establish session keys in order to protect the integrity and
confidentiality of subsequent communications.
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The GlobalPlatform card specification defines two protocols which are
used to establish a secure channel. SCPO1 is defined in Appendix D of the
GlobalPlatform card specification as a symmetric key protocol that provides
three levels of security (i.e. mutual authentication, integrity and data origin
authentication, confidentiality). The details of the secure channel protocol
(SCP02) can be found in Appendix E of the GlobalPlatform card
specification. The two protocols use symmetric key cryptography for the
authentication, establishment of session keys and protection of subsequent
communication between the card and the outside world. While the existing
protocols are mainly used for card content management purposes they can
also be used by applications for secure communications. For example, secure
communication between a card and an off-card entity is considered
necessary whenever a sensitive operation (e.g. during cryptographic key
exchanges) is about to be performed.

Another main component of GlobalPlatform is the notion of security
domains. GlobalPlatform security domains are the on-card representatives of
the card Issuer or an application provider. It is the security domains that
allow Issuers to share control over selected portions of their card with
approved partners. Additionally, security domains are responsible for
cryptographic functions and key handling/separation functionality. In terms
of communicating with the off-card entity in a secure way the security
domains implement different secure channel protocols, as aforementioned.
For the purpose of this paper, we will be using the notion of a security
domain as a mechanism that will securely store keys and control access to
the secure channel mechanisms.

The GlobalPlatform smart card specification is becoming the de-facto
mechanism for secure application handling especially for Java cards [9] used
in the GSM [28] and finance sectors [27]. There are currently ongoing
discussions in order to enhance the functionality offered with the provision
of additional secure channel protocols based on public key cryptography. In
the following sections we present the main characteristics of the proposed
protocol.

3. THE ARCHITECTURAL MODEL

In this section we highlight the main characteristics of a model for the
use and operation of a public key cryptography smart card security protocol.
Subsequently, we also define the main operational characteristics of the
protocol.
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Entities and Operation of the Model

The principal participants and relationships between participants are
depicted in the following paragraphs. The main entities are off-card entities
and smart cards. More specifically in a multi-application smart card usage
scenario the entities that are likely to get involved in a communication
session with the card are the Issuers and any Application Providers who have
a business relationship with the Issuer.

For the purpose of this paper the establishment of a secure channel is
divided into three sequential phases as defined in [6]:

e Secure Channel Initiation — when the card and the oft-card entity have
exchanged sufficient information enabling them to perform the required
cryptographic functions. The Secure Channel Initiation phase also
involved the authentication of the off-card entity by the card.

o Secure Channel Operation — following the exchange of card and off-card
data the two entities will have the means to establish a secure channel
based on recently established session keys.

o Secure Channel Termination — if at any stage during the operation of the
secure channel either the card or the off-card entity determines that the
messages received do not correspond to the expected messages or the
messages do not carry the necessary cryptographic protection of expected
fields then the secure channel should be terminated.

Therefore, for the purpose of this paper a secure channel is initiated either by
the off-card entity using the appropriate Application Protocol Data Unit
(APDU) command or by an on card entity (e.g. a Security Domain) directly
when an APDU (that is cryptographically protected) is received.

Operational Characteristics

The established session keys are used for providing integrity and
confidentiality on the exchanged messages. For this protocol the following
requirements must be satisfied:

1. C, represents the smart card. Typically a sufficient tamper resistant
device which is relatively difficult to compromise; it has access to a
variety of cryptographic algorithms and a good random number
generator. A multi-application smart card platform (e.g. GlobalPlatform)
will provide significant functionality that will strengthen the overall
concept of dynamic application management.

2. H, is a host defined as an off-card entity that requires establishing a
secure channel with the smart card, application or smart card operating
system (SCOS).
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3.

All entities share public values p and a, where p is a large prime number
and a is an element of a large prime multiplicative order modulo p. We
will write ¢ for (¢" mod p) throughout.

Each card has a Diffie-Hellman key agreement key pair. More
specifically, card C has private key agreement key y with corresponding
public key ’. The card’s key pair can be either generated off-card by the
issuer or the application provider and subsequently loaded onto the card,
or it can be generated on-card (if the functionality is provided by the
card). In either case the public key has to be certified by the
corresponding off-card entity, i.e. the issuer or an application provider.

. The host (H) has an RSA public encryption key, which is certified by the

corresponding certification authority.

The card and the host share a symmetric cryptosystem and a key
generation function (e.g. a one-way function) f1(Z).

The card is capable of generating random numbers.

Each card (e.g. through a security domain) has a trusted copy of its
owner’s (e.g. certification authority, issuer or application provider) public
certification key whose corresponding private key is used by the off-card
entity for issuing certificates (i.e. for the Diffie-Hellman and RSA keys).

On top of these requirements the protocol should be able to fulfil the
following requirements:

1.

2.

Cheap to operate. lts operation should not require the purchase of
additional expensive smart card or host equipment.

Fast. Communication between the entities should take place with a
minimal exchange of messages. Moreover the messages exchanged
between the participants should minimise the use of unnecessary
cryptographic operations (given the limited computational capabilities of
smart cards).

Efficient. The system’s operation should not restrict the normal
participant’s behaviour.

Flexible. It should also be able to accommodate the participant’s requests
for exchanging optional parameters.

Secure. It should be able to offer adequate levels of protection and follow
the secure channel establishment steps as described above.

In the following section we present the architectural characteristics of the
protocol.
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Operational Assumptions

Given the number of the entities involved, there is clearly a need for a
Public-Key Infrastructure (PKI) [29, 30] that assists these entities in
managing their keys and supports the security functions of the proposed
protocol.

The supporting functions of a PKT include key certification, authorisation
of participating entities, and the ability of a participating entity to have
multiple keys. For simplicity and in order to sustain the practicality of the
overall architecture the description of the proposed infrastructure will
provide examples linked with the GP architecture as described above.
Furthermore, the details of the PKI infrastructure are not within the scope of
this paper and we also assume that adequate key and entity management
procedures are in place.

According to the proposed infrastructure, each participating off-card
entity (being an Issuer or an Application Provider) has a key pair (namely
certification key pair) which is used for the certification of other keys. The
public key of this key pair is securely loaded on the card (e.g. in a security
domain that represents the off-card entity on the card). The corresponding
private key is used for the certification of RSA public encryption keys
(which are used for the establishment of a secure channel). These certificates
bind the included public key to the entity that is authorised to use this public
key encryption key during the establishment of a secure session. As an
alternative, the certification key pair might belong to a Certification
Authority, which has a business relationship with the off-card entity.

Secure loading and replacement of these keys can take place by
establishing a secure channel that will enable the secure transfer of keys to
the card (e.g. by using the Put Key command as described in the GP
specifications). Initial keys for the Issuer can be optionally hard-coded (e.g.
masked in ROM) and used, during the personalisation phase, for the loading
of the public certification keys. Loading of the public keys for Application
Providers has to be done in a secure way (e.g. during the loading of the
corresponding GP security domains or during the personalisation of these
security domains). Following the loading of these certification keys, any
public encryption key that belongs to an entity recognised by the security
domain and is certified using the certification private key can be used for the
establishment of a secure channel.

Given the proposed infrastructure, the card (or a security domain) is able
to tell whether the key presented to it belongs to an entity that is authorised
to establish a secure channel by verifying the certificate. For instance, if the
certified key belongs to an Application Provider and is certified using the
certification key loaded on the Application Provider’s logical space in the
card (e.g. a security domain) then the off-card entity is authorised to
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establish a secure session with one of the applications belonging to this
Provider.

We summarise the notation used in the subsequent description of the
protocol. This notation is an extended version of the notation defined in [5,
34]. Descriptions of the cryptographic algorithms appropriate for use in the
protocols defined below can be found in [5, 35].

Table 1. Algorithms, Keys and Notation.

Notation Description

Y||Z Represents the concatenation of data items Y, Z in
that order.

X-Y: Implies that entity X sends entity Y a message with

C contents C.

{X,Y,Z} Implies that items within curly brackets are optional.

f1=h(Z) IS the result of a collision resistant hash function such
SHA-1 applied to the data Z.

Ex(Z) Is the result of encipherment of data Z with a

symmetric encipherment algorithm (e.g. AES or
triple-DES) using key K.

PKx(R) Is the result of encipherment of data string R using a
public key algorithm (e.g. RSA) with key X.

CSN Represents the Card’s Serial Number.

SK Is a session key to be used for the subsequent

cryptographic protection of a secure channel.

Rand_X Is a random number generated by entity X (e.g. a Host
or a Card).

Cert(X) Represents a certificate on key X, e.g. X=Host DH.

X PEK Represents entity’s X Public Encryption Key, e.g. an

RSA key.

X SEK Represents entity’s X Secret Encryption Key, e.g. an
RSA key.

X_DH Represents entity’s X Diffie-Hellman Public Key, e.g.
Host DH.

To strengthen the security provided by this scheme and considering that
the off-card entity might use the certification key pair to certify keys not
used by this protocol, certificates have to explicitly state that the certified
keys are authorised to be used for the establishment of a secure channel. This
explicit authorisation is granted when specified in one of the certificate
extensions. Given an Issuer, who would typically have many certified keys
for different purposes, there is clearly a need to protect the card from
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accidental or deliberate misuse of a key that is not authorised for this
purpose. Therefore, the card shouid only use those keys that explicitly state
in a dedicated extension that they can be used for communications with the
card, and more specifically, for establishing a secure channel.

Apart from the off-card entities’ RSA public encryption keys, the
proposed protocol requires each card to have one or more Diffie-Hellman
keys [12]. There are two options for the certification of these keys; either the
card has a single key pair which is certified by the Issuer and shared among
application (or security domains) that exist on the card, or each application
(or security domain) has its own key pair certified by the entity it belongs to.
The second option provides more flexibility as it allows the corresponding
entity to specify the format based on their applications requirements. Given
that none of these approaches introduce any risks to the security of the
protocol it is up to the issuer’s discretion to adopt either of these options.
Please note that the infrastructure required for supporting the certification
and verification of these keys or the certificate format [32] is beyond the
scope of this paper.

4. A PUBLIC KEY SECURE CHANNEL SMART
CARD PROTOCOL

In this section we present a technique that use well-established public key
techniques for mutual authentication and key establishment between a smart
card and an off-card entity based on the principles of the Diffie-Hellman key
agreement protocol and a combination of symmetric and asymmetric

cryptography.
The Protocol

The proposed protocol, which involves a host (off-card entity) H and a
card C, consists of the following steps (please note that messages in curly
brackets are considered as optional):

1. The host initiates the protocol by sending the following message to the
card:

H - C: Cert(Host DH) || Rand_H || { Host ID ||
Request_Cert(Card_DH) ||
Request_Cert(Card_PEK) ||
Cert (Host_ PEK)}

where {optional parameters} is used by the host to inform the card on
certain communication requirements (e.g. protecting certain card details
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and state whether the card has to return to the host the certificate on its
Diffie-Hellman public key or just the certificate’s identification
number).

2. On receiving message (1) the card verifies the certificate
Cert(Host DH) using the preloaded public certification key of the
corresponding off-card entity. If the certificate verification is successful
and the entity is pre-authorised (e.g. if the entity possesses a security
domain) then the card checks whether there are any optional
parameters. If the are no problems with the message the card calculates
K, as the output of a key generation function fI whose input is the
shared Diffie-Hellman key «”, ie. K = fI(a™), it generates a
pseudorandom number (Rand_C) and encrypts the two random numbers
with key K. Subsequently, depending on the optional parameters it
formulates the following message, which is optionally encrypted with
the host public encryption key (Host PEK):

C->H  Ex(Rand_H || Rand_C) { PKyospex((Cert(Card _DH) || CSN)
|| Rand_H) }

On receiving message (2) the host uses its private encryption key
(Host_SEK) to decrypt the second part of the message. Subsequently, it
verifies Cert(Card DH) and ensures that the message comes from the
required card (CSN). Subsequently, it generates key K (by using the
card’s Diffie-Hellman certificate) and decrypts the first part of the
message in order to obtain the card’s random number (Rand C).
Finally, it generates a new random value i.e. Rand HB. The optional
session keys (SK), if sent to the card, will be used as the session keys for
the established session. This is useful during card personalisation and
card updates where the off-card system has pre-computed the messages
to speed up the process. Note that if the off-card entity does not sent
session keys, a key generating function can be utilised for the generation
of session keys (which will be used to provide integrity and
confidentiality for the exchanged messages). Finally, it sends the
following response to the card:

H - C Ex (Rand_C, {SK}, Rand_HB)

3. On receipt of the host’s response the card decrypts the message and it
verifies the content (i.e. the correct Rand_C); if no problems are
encountered it uses the newly obtained session keys and sends the
following response to the host:
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C~>H  Egg(Rand HB, {optional parameters})

4. On receiving the message the host will use the previously established
session keys in order to decrypt the message and obtain the previously
sent random number (Rand HB) along with any further optional card
details.

If all the steps are successful the host and the card will use the established
session keys (or the keys provided by the host in step two of the protocol) for
the protection of exchanged messages throughout this session.

S. PROPERTIES AND SECURITY ANALYSIS

The proposed protocol provides mutual authentication and session key
‘establishment between the communicating entities, i.e. an off-card entity and
the card. The established session keys can be used to optionally provide
integrity and message authentication as well as confidentiality on subsequent
communications. Although the protocol is based on public key techniques it
takes into account the restricted computing resources offered by a smart card
(as briefly described in the previous sections). Therefore, the number of
expensive computations (like the ones required by public key cryptography)
are minimised to avoid processing overheads.

One of the factors that could affect the number of expensive
computations was the choice of the Diffie-Hellman keys. Diffie-Hellman
keys can be of two flavours; either long term, preferably certified, keys or
just short term keys that are typically used for a single session. The card’s
Diffie-Hellman key pair is fixed in order to avoid the computational
overhead required for the generation of a new key pair (a relatively
computationally expensive operation for a smart card given that the card has
this capability) for each session. However, there is nothing to prohibit a card
to securely generate a new Diffie-Hellman key pair if operational security or
application requirements impose this. On the other hand, it is assumed that
the host possesses the computational resources for computing and storing a
large number of key pairs. For that particular reason it uses a new key pair
(for each communication), as opposed to a fixed certified one, so that to
avoid one more certificate verification on the card. Note that the host can
generate these keys in advance to avoid delays introduced by the generation
of these keys during the establishment of a secure session.

What can go wrong?

Among the main issues surrounding the deployment and operation of a
security protocol is the compromise of the scheme’s private keys. If a card’s
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Diffie-Hellman key pair is compromised, it is the Issuer’s decision whether
to terminate or block this card, or simply update this card’s Diffie-Hellman
key pair. In the GP analogy if the key belongs to an Application Provider’s
security domain the Application Provider has to simply update this key by
using the Put Key command.

If an off-card entity’s (e.g. the Issuer or Certification Authority) RSA
encryption key pair is compromised, the off-card entity has to perform the
following actions in order to prevent further use of the compromised key by
a malicious user:

1. The off-card entity has to generate a new certification key pair, which
will replace the one used to certify the compromised key.

2. The off-card entity has to generate a new RSA encryption key pair and
certify the public key of this key pair using the new private certification
key. Note that if the issuer has issuer multiple certification keys, it then
has the option not to generate a newly created key pair but to use an
existing one.

3. All the cards that carry the old public certification key have to be updated
with the new public key. As soon as the cards obtain the new
certification key they will be able to reject certificates that were created
using the compromised key.

Replacement of the certification key pair is also deemed necessary when
RSA public encryption key certificates are due to expire to ensure that a key
is not used beyond its expiration date. The off-card entity can use the above
method to replace these keys.

An off-card entity, being the Issuer or an Application Provider, can have
multiple RSA encryption key pairs to avoid unnecessary exposure of a single
key. Given that the public key of this key pair is certified by a certification
private key whose public counterpart is loaded on the card, the card will be
able to verify this key and use it for the establishment of the secure channel.
Off-card entities can also use multiple certification keys. In that case,
however, the off-card entity has to have access to information that will assist
it in the choice of the correct public encryption key certificate, prior to
initiating the establishment of a secure channel. In the GP analogy (as
defined in [6]) this information can be part of the security domain
management data provided to the host as a response to the SELECT
command.

Protocol Efficiency

At the very first instance it can be argued that the protocol is relatively
heavy, especially when compared with corresponding symmetric key
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protocols. However, it is well established that the advantages that public key
cryptography has to offer will have to be balanced with the anticipated
processing and architectural overheads. Most of the publicly available smart
card secure channel protocols are based on symmetric cryptography
techniques, e.g. the GlobalPlatform ones. On the other hand a potential
comparison with a number of public key secure channel protocols for
devices with not some many communication and processing characteristics
will not add a lot of value.

However, by taking into account the performance of cryptographic
algorithms as defined in [31, 32] we can provide some indicative estimates
on the performance of the cryptographic protocol, please refer to Table 2.

From Table 2 we can observe that cryptographic operations of the
protocol can be completed in less than a second. Please note that this figure
does not include the time spent by the SCOS to form the messages according
to the protocol requirements and also to move any data from EEPROM to
RAM and vice versa. Furthermore, it does not include any performance
measurements for the transmission of APDUs as required by each step in the
protocol. However, they give an indication as to how much time is spent in
the cryptographic part of the protocol.

Table 2. Approximate Performance of the Cryptographic Protocol
According to Theoretical Timings.

. Approximate

Operations Timings (ms)

1. Two RSA signature verifications for the host ~2*160
certificate verification on the Host public, and Diffie-
Hellman keys.

2. A random generation (RandC). ~30

3. An RSA encryption for encrypting RandC, the card ~160
CSN and the key K1.

4. A DH computation of a shared secret value ™ ~300

5. A secret key encryption for the encryption of the card ~10
certificate cert (C-DH).

6. A symmetric decryption. ~10

Totals: ~830ms

Furthermore, in order to successfully verify the actual performance
details of the protocol we are currently, experimenting with its development
in a Gemplus GemXpresso card (i.e. Java card Ver. 2.1 [18] and GP 2.1
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platform [19]). We believe that in the final version of the paper we will also
have obtained the required performance measurements which will be
included as another section (i.e. performance measurements from a Java card
implementation of the protocol) in the paper.

6. CONCLUSIONS

In this paper we have outlined the necessity and importance of using
public key based cryptographic protocols for the establishment of secure
channels in a multi-application smart card environment. Although public key
protocols were not widely used in smart card microprocessors due to their
limitations in processing power, recent technological improvements [14, 15]
along with improvements in the operation of cryptographic algorithms [16,
17], make the whole idea more attractive and more feasible.

The core of this paper is dedicated in the development of secure channel
establishment protocol that uses standardised public-key techniques (e.g.
Diffie-Hellman) in order to provide mutual authentication and key
establishment. The supporting infrastructure required to sustain the
protocol’s cryptographic operations is also defined. The proposed protocol,
which benefits from the advantageous key management functionality
provided by public key cryptography, can be utilised in a wide range of
smart card microprocessors. It can be used both by the underlying SCOS and
by smart card applications. More importantly, it can also be smoothly
integrated in the architecture of existing multi-application smart card
technologies as in the case of GP.

The future demands for public key smart card protocols will increase
taking into account the needs and architectural/business models of various
security sensitive applications. We are currently experimenting with the
theoretical and practical implementation details around the design of public
key secure channel protocols (e.g. based on elliptic curve cryptography) and
also compare their performance with other existing protocols.
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Abstract We examine several architectures for extending the nascent technology
of automated trust negotiation to bring nonidentity-based authentica-
tion and authorization to mobile devices. We examine how the location
of trust agents and secure repositories affects such a system. We also
present an implementation of one of these models. This protocol lever-
ages software proxies, autonomous trust agents, and secure repositories
to allow portable devices from different security domains (i.e., with no
pre-existing relationship) to establish trust and perform secure trans-
actions. This proposed system is called surrogate trust negotiation as
the sensitive and resource-intense tasks of authentication are performed
vicariously for the mobile device by a surrogate trust agent.

Keywords: Trust negotiation, authentication, authorization, access control, mobile
computing, proxy, software agent, credential repository

1. Introduction

Interpersonal transactions are often contingent upon relevant attrib-
utes of the involved parties (e.g., nationality, age, job title, financial re-
sources, etc.). These transactions can be quite intricate and involved. In
the digital world, such interactions have historically been viewed as static
identity-based schemes, handled out-of-band using alternative means, or
simply avoided. One proposed solution for this problem of real-time,
attribute-based digital interactions is called automated trust negotiation
[WSJ00, BS00, WYS'02] (see Section 2).
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Trust negotiation appears well-suited for a mobile environment be-
cause mobile devices usually operate outside their trusted domain and
thus have a greater need to determine whether a stranger can be trusted.
This application becomes particularly compelling in light of the prolifer-
ation of such devices, their associated usage models, and their intuitive
contextualization as digital representatives of their respective users.

The development of such a system presents significant obstacles. Mo-
bile devices, due to their size, ease of transportation, and high value, are
both ideal targets for theft and prone to physical accidents which can
lead to their demise. In addition, they can be easily lost. Trust negotia-
tion relies upon elements of public key cryptography and policy compli-
ance checking that are often excessively burdensome on mobile devices.
Also, because mobile network topologies are often unpredictable, such a
system must handle interactions between devices of mixed capabilities
in varied infrastructure configurations. Limited resources, battery limi-
tations, processing power, and connectivity also plague mobile devices.

We use the foundation of trust negotiation to examine an advanced
authentication system compatible with the limited capabilities of many
mobile computing devices, and present one solution to this problem. The
goal of our system is to enable mobile devices to safely and efficiently
perform sensitive transactions on behalf of their owners in circumstances
in which this was previously not possible.

2. Trust Negotiation

Mobile trust negotiation is designed to support automated trust nego-
tiation between strangers that meet in the physical world and desire to
perform sensitive transactions between their mobile devices (PDA, cell
phone, etc.). For example, suppose two military groups from separate
nations meet on the battlefield while conducting joint operations. The
commanders desire to authenticate and authorize each other in order to
reliably share fresh information on enemy positions and tactics. Dur-
ing a natural disaster, emergency response personnel from local, state,
and government agencies converge to the scene and desire to share in-
formation with authorized personnel. A consumer can complete an e-
comimerce transaction while in an airport and be assured that he is
communicating with a trustworthy business.

Trust negotiation solves the problems associated with classical au-
thentication and authorization schemes by allowing individuals outside a
local security domain to safely access sensitive data and services [WSJ00,
BS00, WYS™02]. It enables two parties to perform secure transactions
by first establishing trust through a bilateral, iterative process of request-



Mobile Trust Negotiation 99

ing and disclosing digital credentials and policies. Digital credentials are
the electronic analogues of paper credentials, and may be used to verify
such attributes as identifying information, licensing certifications, and
association memberships. These credentials are digitally signed by an
issuer and assert the veracity of certain attributes of the owner. The
properties of public key cryptography guarantee that these credentials
are both unforgeable and verifiable.

Along with credentials, trust negotiation relies on access control poli-
cies, which protect sensitive resources such as services, data, credentials,
and even other policies from unauthorized access. By specifying the nec-
essary credentials that a party must possess in order to access a specific
resource, policies provide a means by which any user may be granted
or refused access to a resource in real-time. Associating policies with
particular resources allows trust negotiation to thrive in a dynamic en-
vironment in which users and resources are constantly changing. As both
parties in a given transaction may have sensitive resources protected by
applicable policies, trust negotiation often occurs with respective parties
progressively fulfilling the other parties’ policies while iteratively making
policy-based credential requests of their own.

Trust negotiation has two main requirements in order to operate.
First, a trust agent is needed to perform a negotiation on the user’s
behalf. Second, a secure repository is needed to store the sensitive infor-
mation that is needed by the trust agent during the negotiation. This
information includes, but is not limited to, credentials, private keys, and
policies.

Trust agents are intelligent, autonomous software modules that can be
used to establish trust on behalf of their owner with another trust agent.
An agent makes use of access control polices to protect and manage its
owner’s credentials, policies, and keys during a negotiation. There are
various configurations for a trust agent in a mobile environment. When
the trust agent resides on the device, it is called a local agent. When it
does not reside on the device, it is called a remote agent. TrustBuilder
[WYST02] is an existing implementation of a trust negotiation agent.

3. Secure Repositories

A secure repository is necessary to store the sensitive data used for
trust negotiation. Repositories can be local or remote.
3.1 Local Repositories

A local repository, as its name indicates, is stored locally on the user’s
device. Many existing schemes, such as an encrypted file system or a
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set of encrypted files, can be used to store sensitive data locally. The
encrypted storage can be protected by a password or biometric pos-
sessed by the user. There are several application specific methods, e.g.,
Window’s EFS, as well as several widely deployed standards, such as
PKCS#12, that could be used to achieve this result.

Another type of local repository stores the sensitive data in an en-
crypted form on a secure module that could be attached to the mobile
device. An example of this is Sony’s Memory Stick. Through the use
of MagicGate [Ara00], a Memory Stick can store its contents in an en-
crypted form and only release them to someone that can successfully
authenticate.

Another secure module that could be used with a mobile device is
a smart card. Smart cards have several advantages over other local
repositories. Access to the card is protected by a password or biometric.
The private keys never have to exist outside of the card since all necessary
processing can be done within the card. However, the space available on
these cards is very limited. There is normally about 32KB of space for
both an application and its data. It makes sense, therefore, that only
the private keys should be stored on the smart card. Any other data
could be stored in an encrypted form on the mobile device.

In order to compromise the user’s sensitive information the mobile
device, the smart card, and either the password or biometric used to
access the card would all have to be compromised. This dilutes the risk
of carrying sensitive information in a mobile environment. The physical
attributes of the smart card lend itself to the protections of physical
credentials while maintaining their digital protection properties as well.

A local repository provides several advantages. First, it requires no
communication with remote devices. The user can also choose whether
all or a subset of credentials should reside on the device. The user’s
sensitive information is always with him and available for use. Many
existing, widely-tested systems are currently available.

Local repositories also have several disadvantages. One problem is
synchronization. If a user has several mobile devices, he has to replicate
his sensitive information on every device. This could be considered less
secure, because there are more copies of the sensitive information and
thus a greater possibility that one of the copies of the data would be
compromised. When a credential expires, is revoked, or for any reason
needs to be updated or removed, the changes would have to be replicated
on every device that is possessed by the user. This could be a costly and
time-consuming process. Also, since the repository is local, one must
always be in possession of the repository when access to the sensitive
information is desired.
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3.2 Remote Repositories

A remote repository provides a central location for a user to store and
manage his credentials. The remote repository could be administered
by the user on a machine of his choosing or he could delegate that
responsibility to a trusted third party to host it on his behalf.

Remote repositories can be divided into two different categories. Sandu
et al. [SBGO02] define these categories as virtual soft tokens and virtual
smart cards. Virtual soft tokens are a network-based storage solution
of sensitive credentials. Credentials are located on an online server and
are stored in an encrypted form such that only the user may decrypt
them. Since the server cannot decrypt the credentials, the user is in
control of their disclosure. When the user desires to use his credentials,
he can authenticate to the server and retrieve his encrypted credentials;
he can then decrypt and use them. Ideally the credentials should be
cleared from the device when the transaction that required them has
completed. This would prevent undue exposure of the sensitive creden-
tials and keys. An example of a virtual soft token is the MyProxy system
[NTWOL1]. Another example is the proposed standard: Securely Avail-
able Credentials (SACRED) [AFO01]{GJNO04][Far03]. This standard has
the added benefit of application and device-independence.

In the virtual smart card paradigm, the remote repository acts like a
smart card. There are, however, several subtle differences between these
two solutions. In contrast to the physical card, the private key is never
completely known to the virtual card. This is accomplished through the
3-key RSA algorithm. In this algorithm the private key is split into two-
parts, the user and the virtual smart card each hold a part of the key.
Through a shared signature scheme, the two parties can create a valid
digital signature that neither side by itself could create. Virtual smart
cards also have the benefit of instant revocation. Removal of the server-
side component neutralizes a compromised user-side key. Unfortunately,
not all RSA keys can be converted into the 3-key format and thus it is
not plausible to move many existing certificates to this system.

NSD Security’s Practical PKI [BYBS03] is an example of a virtual
smart card. It uses Microsoft’s Cryptographic API or PKCS #11 to
make the credentials available to any application.

Remote repositories offer many advantages. Credentials are always
up-to-date and are accessible from any location, even if the user does
not have his mobile device with him. They have the added bonus of
being application and device independent. Also, there is no sensitive
information stored on the mobile device, so if the device is ever lost the
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credentials are not lost with it. Since the online repository is unable to
decrypt the credentials stored there, the user controls their disclosure.

There are several disadvantages which plague remote repositories.
They must be available at transaction time and thus create a depen-
dence on a third party in order to complete the transaction. If the
online repository is not accessible from where the mobile device is lo-
cated, or is merely not accessible, it is useless. An online repository
creates an additional communication overhead: each time a transaction
requires credentials, the mobile device must interact with it.

3.3 Hybrid Repositories

Both local and remote repositories have their benefits and drawbacks.
The local repositories have very little communication overhead, and do
not require access to an online server at the time of the transaction.
They also, however, require that the user bring the repository with them,
and the propagation of updates in this model can become complicated.
Remote repositories, on the other hand, always have up-to-date creden-
tials and allow the user to access those credentials from any device of
his choosing. Since the mobile device contains no sensitive credentials,
when the device is lost, nothing but the device is lost. However, the
communication overheard, accessibility, and availability issues can limit
the effectiveness of online repositories.

A combination of these two systems could lead to the elimination of
many of the drawbacks that are inherent in these two repositories. We
propose that a virtual soft token be used with a physical smart card to
accomplish this agglomeration.

The smart card would first authenticate the user, and then be used to
authenticate to the online repository. A local repository of all or some
of the sensitive credentials in the repository could then be created. For
added security the local cache could be created such that only the smart
card would be able to access the decrypted contents. The smart card
could have the private keys preloaded, or it could receive the private
keys directly in an encrypted form from the repository. A smart card
could do the decryption of the sensitive credentials that are stored on
the mobile device, or it could give the decryption key to the application
that requires the credential. Both should be made available as an option.

A user should also be able to choose to go fully remote, fully local
(a full copy still resides in the remote repository), or a mix of the two.
This configurability would provide great flexibility to the user, which is
essential due to the wide variety of situations that exist in the mobile
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environment. In any case, a user would require something he knows (his
password) and something he has (his smart card).

There are several disadvantages that still exist in this model. Depend-
ing on the configuration, there could still be a communication overhead
and availability /accessibility issues. There is also the cost of the addi-
tional hardware required, e.g., the smart card and smart card reader.
The cost of this hardware, though, is rapidly decreasing. The additional
hardware can be lost or stolen. Hopefully, since a smart card looks like
a credit card, users will be able to treat it with similar regard and thus
keep it safe, e.g., not leaving it attached to the mobile device.

4. Surrogate Trust Negotiation

We have created a surrogate trust negotiation prototype system that
makes use of the ideas presented above. We adapted the trust negoti-
ation agent, TrustBuilder, to negotiate trust on behalf of the user even
if the user cannot directly communicate with it. This type of agent was
chosen so that we could encompass the greatest range of mobile devices
based on the resource requirements of a remote agent.

Although the hybrid repository discussed above shows promise for use
in this environment, the creation of such a repository is left as future
work. In the system presented below the trust agent maintains a local
repository with the user’s credentials. Even though the repository is
local to the trust agent, it can be seen as a remote repository to the
mobile device. This creates centralized storage that adds security and
convenience to the system by avoiding the dangers of storing sensitive
credentials on mobile devices and by allowing credential updates to be
immediately accessible to all the user’s devices. A user’s mobile devices
share a pre-existing relationship that enabled remote invocation of the
trust agent. This relationship can be terminated by either side if the
mobile device is compromised (see Section 4.2).

The mobile devices directly involved in the transaction are called pri-
mary devices. The requester of a transaction is referred to as the client,
while the other device is the server. These designations, client and
server, are not static as it is reasonable to assume that both will rou-
tinely switch roles as one requests a transaction from the other and vice
versa. In surrogate trust negotiation, a prozy is any device that serves
as an infrastructural intermediary between a primary device and its as-
sociated trust agent.

Figure 1 illustrates three general topologies that effectively categorize
our usage models: bilateral, unilateral, and intermittent access to a wired
infrastructure. Bilateral describes scenarios in which both primary de-
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Figure 1.  Topology Taxonomy.

vices have reliable, economical, and adequate bandwidth to the Internet.
The next, unilateral, describes any situation in which only one device
has a consistent connection with sufficient bandwidth. The final cate-
gorization, intermittent, depicts situations in which neither device has
consistent access to a wired infrastructure. For clarity and brevity we
will explore our system in terms of a unilateral topology only, though
this system would work equally as well in the bilateral topology. In
the unilateral topology one device will serve as a proxy to forward the
negotiation request of the other device to its trust agent.

4.1 Networking Messages

Our surrogate trust system is designed for platform independence and
operability with numerous networking protocols. This section presents
a high-level discussion of the elements necessary to perform trust nego-
tiation and establish secure communications for the transaction.

For simplicity, we will discuss the networking messages as occurring
in three distinct phases: transaction request, authorization, and transac-
tion. In the authorization phase, it is logical to further divide this phase
into three sub-phases: trust negotiation setup, trust negotiation, and
trust negotiation response. These phases and their composite messages
appear in Figure 2.

An exchange begins with the transaction request phase, in which the
client requests a transaction from the server. This is represented by the
Transaction Request message, 1.1, in Figure 2. The trust negotiation
setup phase begins when the server replies to the client and indicates
that the requested transaction is protected and that trust negotiation
must be used for authentication (shown as the Trust Negotiation Request
message, 2.1). If the client is incapable of performing the trust negoti-
ation protocol or chooses not to participate, this is communicated and
the connection is broken. Otherwise, both devices then decide together
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Figure 2.  Network Messages.

which has the best access to the Internet in order to serve as a proxy
(shown as Infrastructure Negotiation, 2.2).

Following infrastructure negotiation, both client and server create a
Trust_Negotiation_Ticket (2.3,2.4) that is sent to their respective trust
agent. The ticket reliably notifies the trust agent that its associated
primary device desires to participate in trust negotiation for a specific
transaction. When the server acts as the proxy, the client sends a ticket
to the server bundled with the location of the client’s security agent. On
the other hand, when the client serves as the proxy, the server creates a
similar ticket but also includes an identifier for the requested transaction
and its associated policy. The nature of trust negotiation tickets will be
further discussed in Section 4.2.

Following the receipt of the appropriate trust negotiation ticket, the
device that has been elected to function as the proxy connects to the
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server’s trust agent and sends a message containing tickets from each
primary device, 2.4. The server’s agent examines the ticket from its
respective primary host and verifies its request to negotiate trust. Fol-
lowing this confirmation, the server’s agent connects to the client’s agent
and sends the appropriate trust negotiation ticket, 2.5. The client’s agent
will then likewise verify the validity of its ticket.

After both security agents have verified their associated primary de-
vices’ intentions, the trust negotiation portion of the authentication
phase begins. Since the server is the device that is protecting the trans-
action, its security agent is responsible for initiating trust negotiation
between the agents. As was briefly mentioned in Section 2, the server’s
security agent begins the process by disclosing policies and/or creden-
tials to the client’s agent, which then responds likewise. This bilateral
exchange, 3.1, continues until the server’s agent deems that the pol-
icy (inctuded in the Trust_Negotiation_Ticket) governing the transaction
has been satisfied or that the negotiation has failed. Factors that could
contribute to a failure include the lack of necessary credentials, expired
credentials, or the number of iterations exceeding a threshold.

Upon completion of a successful trust negotiation, the client and
server trust agents establish the cryptographic key material (see Sec-
tion 4.2) necessary to create a secure link for performing a transaction
between the primary devices. This key exchange is denoted by the Ses-
ston_Parameters, 3.2, message in Figure 2. Following this, the trust
negotiation response portion of the authorization phase begins and this
key material is sent back through the proxy to the respective primary
devices in the form of Transaction.Tickets (4.1, 4.2, 4.3). If trust ne-
gotiation was successful, the primary devices decrypt these tickets and
use the session parameters that they contain to initialize the secure link,
which is depicted by the Sessionlnitialization exchange, 5.1. When chan-
nel initialization is complete, the server and client can securely perform
the sensitive transaction, 5.2.

4.2 Security Provisions

There are three security goals necessary for our proposed system: in-
tegrity, authenticity, and confidentiality. The reasons for these goals are
threefold. First, all are required to reliably initiate trust negotiation.
Second, they ensure the safe delivery of key material to the primary de-
vices following trust negotiation. Finally, they allow for a secure trans-
action between the primary devices following delivery of key material.

Another vulnerability to consider is that of a compromised mobile de-
vice. An ameliorating factor on the extent of potential damage is that
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the trust agent, the credentials, and keys reside on a physically secure
server. These keys never leave this machine, and thus, even if one mobile
device is compromised, these private keys as well as imprinted relation-
ships with other devices remain secure. Furthermore, termination from
the security agent’s side of an end-to-end link is trivial if a user suspects
a device has been compromised and re-initialization likewise in the case
that the device is later recovered.

Cryptographic Tickets. Since the mobile devices may not be in
direct communication with their trust agents, they must use another
method to send reliable and confidential messages to their trust agents
through a non-trusted third-party. This can be achieved using a cryp-
tographic ticket, an encrypted container that holds data. These tickets
are securely communicated between a mobile device and its associated
trust agent because they are encrypted according to the pre-established
relationship that was formed between these entities.

Our system uses two types of tickets. The Trust_Negotiation_Ticket is
an instruction created by the primary devices to its trust agent to initi-
ate or accept the request to initiate trust with another entity. Transac-
tion_Tickets contain the result of the negotiation and, if successful, the
Session_Parameter message which contains the keys necessary to form
a secure channel between the primary devices.

Secure End-to-End Protocol.  The key material that was gener-
ated by the trust agents on behalf of their primary devices is used to
create two different kinds of keys: an authentication key, and a write
key. Each side uses a unique key to encrypt messages and a different
unique key to encrypt a message verification. This creates a total of four
keys. Using these keys, a secure session is then initialized between the
primary devices as specified by the selected transmission protocol. This
exchange is depicted by the Sessionlnitialization messages in Figure 2.

Following session initialization, all transmitted messages will be for-
matted according to the security provisions of the selected transmission
protocol. For example, IPSec’s Encapsulating Security Payload (ESP)
[Ken02] protocol is capable of providing all of our target characteristics
(i.e., connectionless sessions, integrity, authenticity, and confidentiality).
However, an actual implementation of the system can use any established
protocol which fulfills our definition of an end-to-end link. In general,
end-to-end messages will be formatted by wrapping the payload data
with the necessary header information and then encrypting and authen-
ticating the result. In Figure 2, messages formatted according to the
end-to-end protocol are denoted by the syntax {payload}sender,recipient-
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Thus, using the procedure described above, the security characteris-
tics of the implemented connectionless protocol, in this case ESP, can be
leveraged to secure the communication channels. However, as the chan-
nel between trust agents is assumed to be secure by virtue of the utilized
trust negotiation protocol (e.g., [HIMT02]), only the channels between
the primary devices and between a primary device and its associated
trust agent need adhere to our definition of an end-to-end link.

4.3 Implementation

We have implemented a surrogate trust negotiation prototype system
[Sun03]. The hardware core of the prototype system was comprised
of two WiFi-enabled iPAQ handhelds running Microsoft’s Pocket PC
operating system, which served as the primary devices. The physical
and link layer of the primary channel was 802.11b. On top of this,
basic TCP /IP sockets were used for communication between the primary
devices. Both the server trust agent and client trust agent were run on
Pentium 4 machines running Windows XP. The SOAP RPC protocol
was used as a means of communication between negotiating trust agents
as well as between primary devices and their respective trust agents.

5. Conclusions and Future Work

We have examined the role of secure repositories and trust agents in
an architecture for enabling secure transactions between portable devices
that have no pre-existing relationship. We have shown how the decision
of the type of repository affects the safety of a user’s sensitive information
while in a mobile environment. Also, the choice of repository determines
what types of mobile devices can benefit from this architecture.

We have outlined surrogate trust negotiation, a flexible model that ef-
fectively leverages the combined capabilities of network proxies, software
agents, and secure repositories. This system also makes trust negotia-
tion accessible to the greatest number of mobile devices since it shifts the
resource-intensive task of authentication to a remote agent. The use of a
local repository on this remote trust agent allowed us to obtain many of
the desirable properties of a remote repository. Surrogate trust negotia-
tion lays the foundation for the maturation of effective, new technology
in the rapidly evolving research space of secure mobile transactions.

The system, however, is only suitable for the bilateral and unilat-
eral topologies. We are currently working on a system that will satisfy
the requirements for intermittently connected devices. The foremost
problem in this topology is the inability to access a remote trust agent.
Consequently, the resource-intensive task of authentication must be ac-
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complished on the mobile device by a completely local trust agent. We
are also working on a system that would provide the user with the flexi-
bility to choose how and where the trust agent and repository will exist.
This would involve creating a hybrid repository and trust agent capable
of mixed degrees of locality and remoteness.
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WEAK CONTEXT ESTABLISHMENT
PROCEDURE FOR MOBILITY AND MULTI-
HOMING MANAGEMENT

Vesa Torvinen and Jukka Ylitalo
Ericsson Research, NomadicLab, Finland

Abstract: Trust establishment seems to be the most difficult problem in mobility and
multi-homing management. Many protocol proposals assume the presence of
some security infrastructure (e.g. a Public-Key Infrastructure). However,
building such a global infrastructure has not taken place, maybe because it
would be too expensive and difficult to deploy. In this paper, we introduce a
security context establishment procedure that utilizes reverse hash chains, and
does not require pre-existing security information. The procedure is known to
be vulnerable to an active Man-in-the-Middle attack in the first message
exchange, however, the procedure is efficient, and does not have inherent
scalability problems.

Key words:  security, mobility management, multi-homing management, and trust
establishment

1. INTRODUCTION

Within the last couple of years, we have witnessed a lack of security
awareness in many protocol design proposals. Even though many designers
acknowledge the importance of considering security aspects right from the
beginning, security is still far too often seen as an add-on, rather than an
inherent part of the design process. The reason for the current situation is
probably related to the complexity of current telecommunication and
security protocols. Also, protocol designers are typically strongly
discouraged from making their own security designs, which may alienate the
designers from considering security related issues.
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The situation is not much better from the security community point of
view. There has been a lack of resources for doing security analysis in
different application . contexts. Furthermore, security requirements
themselves may not have been realistic from a deployment point of view.
Even though we may have “bullet-proof” security protocols, they may not be
widely deployed.

In this paper, we study mobility and multi-homing management problems
from a security point of view. We understand mobility management as a
procedure in which the locator of an entity changes over time [cf. 21, 10].
Mobility mechanisms allow mobile nodes to remain reachable while moving
around in the network. We assume that a mobile node changes its IP address
every time it moves to a new link. Location changes are challenging
especially for transport and higher-layer connections that should be
maintained while moving around the network. Also, the protocol design
should be resistant to various attacks, such as Denial-of-Service and re-
direction attacks.

Multi-homing, on the other hand, comes very close to the mobility
management problem. In this case, the node has several alternative access
paths valid at the same time. Two entities may want to communicate via
parallel paths at the same time especially if access paths are good for
different types of traffic [cf. 1]. In multi-homing, the change of locators may
be slower than in the mobility case (e.g. multi-homing may require re-
numbering a site’s address space), however, the problem of changing
locators over time remains the same.

From a security point of view, we further develop the idea of “weak”
security. Our goal is to develop a weak context establishment and update
procedure that is reasonably secure against MitM, DoS and re-direction
attacks, and that is not based on the use of public key cryptography. The
procedure should be usable for mobility management and multi-homing. We
also assume that the procedure does not need to take care of traffic
confidentiality protection because there are other usable upper layer
protocols available for this purpose.

The rest of the paper is organized as follows. The next section goes
deeper into the security problems in the mobility and multi-homing context.
The third section introduces the theoretical background to the security
mechanisms we intend to use, i.e. reverse hash chains. Our generalized
solution is presented in the fourth section, followed by a section utilizing the
framework for multi-homing and local mobility management problems.
Finally, we draw some conclusions based on our experience.
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2. BACKGROUND

IP-based mobility, in which IP addresses are frequently changed, is
challenging from an efficiency point of view. Each new network connection
requires lots of processing, and message exchanges, e.g. network discovery,
authorization, TP address configuration, router discovery, and mobility
management procedures. Depending on the network and IP version, the cost
of movement in terms of message count may be up to 16 messages. Multi-
homing management has not been in the scope of mobility management
protocols, but some recent development initiatives would like to look at both
problems together [see e.g. 29]. In multi-homing, the frequency of location
changes is typically assumed to be slower than in mobility but the primary
management problems remain more or less the same.

There are different approaches for lowering the costs of movements, for
example optimizing the procedures at different protocols layers [5, 11, 25,
13], or maintaining context information at the upper layer while isolating the
changes to lower layers [e.g. 27, 4, 22, 7]. Local mobility management in
different roaming scenarios has produced different architectural proposals,
e.g. hierarchical structures of mobile anchor points [5, 25], or fast vertical
handovers and context transfers between adjacent routers [13]. The
shortcomings of these approaches are typically related to security. Most of
the proposals require a Public-Key Infrastructure (PKI), and heavy [Psec
processing even though there is no global key management infrastructure
[18].

There has been recent interest in“opportunistic” or “weak” security
procedures that are known to be vulnerable to active man-in-the-middle
(MitM) attacks in the first message exchange, but which would still provide
some security. In these approaches, the end-points are typically not
authenticated in terms of knowing the real identities. Instead, the goal is to
know that the entity remains the same during the communication. One
example of such a procedure is a Diffie-Hellman key exchange using self-
signed public key certificates [e.g. 23]. A benefit of this procedure is that
deployments could start using Public-Key based cryptography even though
key distribution and verification infrastructures did not exist. Another
example of weak security is a procedure in which shared secrets or tokens
are exchanged in clear text via two separate communication paths. For
example, the MIPv6 return routability procedure assumes that attackers are
not able to see messages in both paths, and consequently are not able to
construct the secret [3, 10].

A lot of focus has been put on two kinds of attack, namely Denial-of-
Service (DoS) attacks, and re-direction (or Distributed DoS, DDoS) attacks
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[3]. DoS is typically prevented by delaying the phase when a state is created.
The entity that initiates the communication is generally required to do most
of the security processing before the responder gives much attention to him.
The entity that responds to requests tries to remain stateless as late in the
procedure as possible. Creating state too early opens a door for various DoS
attacks. Another common method for DoS resistance is delaying the
processing load. For example, public key operations are vulnerable to DoS
attacks if the communication protocol requires lots of public key checking
by the responder at the beginning. In most cases, protocols add
computational load (e.g. by introducing cryptographic puzzles) to the
initiator side.

Protection against re-direction attacks requires confirmation that there is
really someone expecting a response at the source address, i.e. the attacker is
not trying to re-direct the message flow to the victim’s current location. It is
generally not wise to trust blindly the location information. Quite often,
communication protocols check that the communication peer is reachable at
the source address, and is able to return some negotiation parameters from
that address.

3. REVERSE HASH CHAINS

Our work is based on the simple, and well-known cryptographic
construction called the “reverse hash chain” (or “hash chain” for short). [15]
first introduced the method, and it has been applied in several areas, for
example for public key certificate management [17], micro payments [24,
28], (anonymous) authentication [15, 8, 12], and micro mobility and routing
protocols [26, 9]. Hash chains have also been deployed in a binary tree
format [cf. 16, 28, 26, 9], however, in this paper we focus on the chain
structures.

Technically speaking, a hash chain is a cryptographically generated list
of inter-related data entities. It is practically impossible to calculate or
otherwise figure out the next value in the chain even when you know the
previous value. However, it is very easy to verify that some given value is
the next value of a chain. A hash chain is a relatively secure method to be
used in communication protocol designs when compared with other similar
weak methods, such as the use of cookies, tokens or secret splitting.

A hash chain is created by recursively computing a hash function over a
result of the same function. The initial argument for the first hash value
computation is typically a large random number. The last generated value of
the chain is called the "anchor" or "root" value. The hash values are revealed
in reverse order starting from the anchor value. This technique is usually
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applied based on an assumption that only an authentic end-point knows the
correct predecessor values of the chain.

Reverse hash chains can be used as keys in integrity protection and
message origin authentication [cf. HMAC in 14]. However, the result is
somewhat different from more typical message protection methods, such as
shared secret based schemes. Firstly, anybody who is able to receive the
subsequent messages is able to verify that the messages belong together.
Secondly, message authentication with hash chain values needs to be
delayed because the input value (the key) is not revealed until the next
message. Even though the verification is delayed, this procedure can be used
to verify that all subsequent messages come from the same entity as the first
message if the hash chain is used to bind the messages together.

If two communicating entities want to use hash chains to protect their
communication, they need to exchange anchor values. If the exchange is
done without protection, a Man-in-the-Middle (MitM) attacker may replace
the anchor value with its own hash chain. Note, however, that the use of hash
chains makes the MitM attack much harder than if, for example, clear text
passwords were used. With clear text passwords, the attacker can be passive,
and just monitor the traffic to get the password, but with hash chains the
attacker must be active right from the beginning in order to replace the
anchor values.

A MitM attack can be mitigated by protecting the anchor value with a
delayed message authentication code, and by sending the plain text anchor
value and the message authentication code via different communication
channels. In this case, the attacker must have access to both channels in
order to perform the attack.

If the chains are short (which they should be in order keep the
computational load low), there is a risk that a chain runs out of values. In this
situation, the principles may need to re-negotiate new anchor values.
However, it is also possible to link subsequent hash chains together into a
longer chain by using the last value of one hash chain to protect the message
carrying the anchor value of the next chain. For this reason, the length of the
hash chains is not considered as a problem in this study.

4. FRAMEWORK

Our solution framework mimics the message structure of MIPv6 route
optimization [10]. Context Establishment is used to establish state, to
exchange the anchor values of reverse hash chains, and to initiate two
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locators. A Binding ModificAtion message updates location information,
and it is only sent from an already verified location.

4.1 Context establishment

The context establishment (CE) exchange creates a state between an
initiator (I) and a responder (R). The procedure uses the delayed
authentication principle in which the initial message exchange is verified
with the parameters included in the next message. The anchor values of the
hash chains are agreed via two separate communication channels in order to
make the MitM attack more difficult. The first round-trip of context
establishment is designed to be stateless for the responder side. At the end of
the exchange both initiator and responder have the anchor value of the other
communication peer.

Initiator Responder
FloTI(1Ds, challenge, L,(1), Ly(l), HMAC 1)

 FloT(IDs, HMACqq7;, HMACr7)

Stateless

SIoTI(IDs, Hy(l), challenge, L, (1), Ly(), HMACgy7, HMACe 1)
SIoT(IDs, Hy(R))

«C—

Figure 1: Context establishment

The initiator first sends the First Locator Test Init message, FloTI, to the
responder via the first location L1(I). The FloTT message contains the
identities of the initiator and responder (IDs), a challenge, location
information L1(I) and L2(I), and a keyed hash, HMACFIoTI. The
HMACFIoTI includes the anchor of a newly generated hash chain as a key,
and it is computed over all other parameters in the message (“||”represents
concatenation):

o HMACFIloTI = {keyFloTI, messageFloTI}
o keyFloTI = HO(I)
e messageFloT] = IDsj|challenge|[L 1(D)||L2(1)

Once the responder receives the FloTI message, it must check that the
message has one of the locators as a source address. The responder must also
check that it does not already have a context with the ID pair. If the context
is not found, the responder continues with the negotiation. However, it does
not want to establish a state because it is not able to verify the origin of the
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message. In order to remain stateless, the responder computes a temporary
hash chain using the initiator's parameters in the FloTI message, and sends a
First Locator Test message (FloT) to the initiator. The FloT message is
protected with the anchor value of the responder hash chain. Note that the
responder must be able to reconstruct the same hash chain based on the
parameters that are present in the SloTI message in order to be stateless
during the test of the first location (FloT1/FloT). This can be done securely,
for example, by using a local secret as one input to the hash chain
generation. Other useful input parameters are end-point identifiers, the
challenge of the initiator, and the initiator’s location information.

The keyed hash for the FloT message is computed using the anchor value
as a key:

e HMACFIoT = {keyFloT, messageFloT}
e keyFloT = HO(R)
e messageFloT = IDs|| HMACFIoTI

The initiator replies to the FloT message with a Second Location Test Init
message (SloTT). The SloT! message reveals the initiator’s anchor value, and
it is sent from the second location .

Again, the responder does not accept SloTI packets with an ID pair that
already has a host pair-context. If the context is not found, the responder re-
computes its own hash chain and verifies the message authentication codes
(HMACFIloTI and HMACEF1oT). The anchor value of the initiator hash chain
binds the FloTI and SloTI messages together, and in this way the responder
is able to verify that the messages are coming from the same entity. If the
keyed hashes are valid, the responder creates the state, and replies with a
Second Locator Test message (SloT) revealing its own anchor value.

The initiator verifies the keyed hash in the FloT message with the anchor
value received in the SloT message, and finalizes its state.

From the responder’s point of view, the context establishment is able to
verify only the first location of the initiator. The responder cannot trust that
the second location (L2(I)) is authentic until this locator is tested. For
example, it is still possible that the initiator forges the source locator in the
SloTI message (source address spoofing). In this case, the attacker never
receives the SloT message, however, it may try to fool the responder to e.g.
forward a media flow to a victim (re-direction attack).

Note also that the procedure includes some identity and security context
information (marked as “IDs” in Figure 1), which is left open on purpose.
Identities and/or security context names are a crucial part of the security of
this framework. For example, naming a security context solely by IP
addresses is not wise unless the ownership of the IP addresses can be
confirmed by some other means [e.g. by the use of cryptographically
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generated addresses as specified in 3]. Otherwise, an attacker is able to
“steal” the IP addresses from authorized parties. Allowing multiple contexts
from/to the same IP address is a better strategy if IP address ownership
cannot be verified. An attacker may still use a false IP address, however, the
real user can also use it.

4.2 Binding modifications

Once the state has been completed, both entities may send to their peers
an update message on the locator sets. The hash chains are used as keys in
delayed message authentication, and consequently each locator update
operation will require three messages. However, this is wise anyhow because
of a potential re-direction attack, i.e. the new locator may be pointing to the
victim’s current location instead of the initiator’s current location.

BA(IDs, Ly(1), action, H, (1), HMACg,)

‘BAA(IDs, H,(R), challenge)

BAAR(IDs, Hy(l), chailenge)

Figure 2: Binding ModificAtion

The Binding ModificAtion message (BA) includes the locator, which is
about to be modified, e.g. locator “L3(1)” in the figure above. It also includes
information about the action to be performed for this location, e.g. added as
a new locator, or deleted because it is not in use anymore. Adding a message
authentication code HMACBA protects the locator update;
¢ HMACBA = {keyBA, messageBA}

o keyBA =H2(I)
e messageBA = [Ds||L3(I)ljaction

Once the responder receives the BA message, it verifies that the hash
chain value H1(I) belongs to the initiator (this example assumes that the
previously revealed hash chain value was the anchor, HO(I)). The responder
replies with the Binding ModificAtion Acknowledgement message (BAA) to
the received location. The BAA message includes the next value of the
responder’s hash chain, and a challenge. The challenge is returned back in
the next message, and it is needed in order to avoid a re-direction attack.

The initiator verifies that the hash chain value H1(R) belongs to the
responder. The Binding ModificAtion Acknowledgement Reply message
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(BAAR) completes the locator update procedure, and it includes the next
value of the initiator’s hash chain, and the challenge from the BAA message.
By returning the challenge, the initiator demonstrates that it really received
the BAA message, and did not just wait for some time, and forward the
BAAR message from some location (i.e. source address spoofing, re-
direction attack).

The responder verifies the challenge and that the hash chain value H2(I)
belongs to the initiator. The responder also verifies that all parameters in the
original BA packet were unmodified using HMACBA. After successful
verifications, the responder changes the state of locator L.3(I) according to
the requested action.

Even though we considered the length of the hash chain as a non-issue
for this framework, it should be noted that the first message of Binding
ModificAtions could be used for bootstrapping new hash chains. In this case,
the BA and/or BAA message(s) includes also the anchor of the new hash
chain. The anchor values must naturally be protected with HMAC using a
value from an already existing hash chain as a key.

S. USE CASES

This section demonstrates the use of the framework in multi-homing and
mobility contexts. Examples are not intended to be exhaustive protocol
designs but rather act as simplified “proofs of concept”. The first case
example focuses on multi-homing, and the second on local mobility
management. Note that the use cases cover two fundamentally different
deployments of the framework, i.e. in the first example the communication
paths are physically separate while in the second case the separation is
logical.

5.1 Multi-homing management

In multi-homing management, the Multi-homing Node and some
Responder have two physically separated communication paths — at least on
the Multi-homing side. Communication paths may join close to the
Responder. See figure 3.

Utilization of our framework is straight forward for this use case. HMAC
values are exchanged via the first location (e.g. by piggybacking them in
TCP SYN messages), and the clear text hash chain anchor values via the
second location. Note, however, that there is no absolute need to finish the
context establishment until the multi-homing node wants to start using the
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second location (if ever). This use case may cause two parallel context
establishment procedures, and should be further studied.

Multi-homing node Responder

TCP SYN(FloTl)
“TocalNetwork.

TCP SYN(FloT) intemet

SloTl

SloT

Figure 3: Context establishment in multi-homing context

An active MitM is able to change the hash chain anchor values from the
context establishment close to the Responder. However, this is not weaker if
compared to the use of IPsec in opportunistic mode, for example.

5.2 Local mobility management

As we stated before, security has been the biggest problem in developing
efficient mobility management procedures. Most of the protocol proposals
simply require the use of PKI in order to work in real-life roaming situations.
Alternatively, the security associations must be configured manually.

Optimized mobility management proposals typically include some local
mobility management entity (LME) in the visited/access network, e.g. a
mobile anchor point in [25], or previous/next access router in [13]. Common
for all these proposals is that mobile node (MN) needs to set security
association with this entity.

The use of a LME does not remove the need for the MN to have a
security association with the Home Agent (HA). Every time the MN changes
its location, it must still update its new location with the HA — no matter if
the new location is the real location of the MN, or the address of its LME.
Once the MN is behind the LME, it does not need to update its location
information while moving under the area of the LME. Binding Updates
(BUs) are typically assumed to be sent to HAs using IPsec.

The use of our framework in this context requires the presence of two
logically separated communication channels. Even though the MN and the
LME do not have two physically separated communication channels, they do
have two logical channels; one direct end-to-end path, and another path via
the MN’s HA (protected with IPsec between the MN and HA). Note also
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that the FloTI and SloT1 messages are likely to arrive at the LME from
different directions, especially if the LME is a “NAT-like” device.

The framework can be applied in this way: the FloTI and FloT messages
are tunnelled via the HA using the HoTI/HoT message pair from the MIPv6
return routability procedure [10]. From the HA’s point of view, the LME
acts as the Correspondent Node (CN). The SloTI/SloT message pair can be
exchanged directly between the MN and the LME without the MIPv6 return
routability tunnelling. See figure 4.

Mobile node HA LME
HoTI(FloT!)

HoT(FloT) l  Intermet

-

SloTl

SloT

Figure 4: Local mobility management

Once the MN moves to a new location, it can send the Binding
ModificAtion message to the LME. Note that the MN and the LME do not
have any pre-configured security association, but they are able to create a
weak one by relying on the hash chains and separate communication paths.

In theory, the context establishment could also be used in situations
where the exchange messages are sent via two access routers (e.g. via the
previous and next access routers). This scenario is more vulnerable to certain
attacks because IPsec cannot be used, however, it could still be useful for
some more limited use cases. For example, the use of this procedure could
be secure enough to protect binding updates for ongoing upper layer
sessions. An attacker acting as an access router may be able to temporarily
hijack the session, however, there is nothing to prevent the MN from sending
new binding updates to the CN via the HA. Also, the upper layer security
procedures may still be used to protect the confidentiality of the
communications.

6. CONCLUSION

In this paper, we have further developed the ideas related to “weak” or
“opportunistic” security procedures in a mobile and multi-homing context.
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Our exercise demonstrates that development of weak security protocols is
possible, and that weak security seems to have some attractive properties
especially from efficiency and effectiveness points of view.

In general, our security context establishment procedure is more secure
than the return routability procedure in MIPv6 because our procedure
requires an active MitM attacker to maintain reverse hash chains. Our
procedure is also more efficient and scalable compared to existing protocols,
and protocol proposals that mostly rely on PKI or manual keying.

We believe that weak security mechanisms may play an important role in
mobility and multi-homing management in the near future. However,
developing “forwards compatibility” with stronger security methods, such as
PKI1, HIP [e.g. 19] or cryptographically generated addresses [e.g. 2, 20], is
not a bad idea assuming that these kinds of mechanisms may take over some
day. Integration of a public key based method to our procedure can be easily
done by adding public key information as part of the initial value of the hash
chain operation. For example, signing some parameters from the context
establishment, and revealing the signature later in the process could provide
a nice migration path between these technologies.
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Abstract: In order to perform a useful threat analysis of a web application platform,
some architectural assumptions about such applications must be made. This
document describes a generic architecture for typical 3-tier web applications.
It serves as the basis for analyzing the threats in the most important
infrastructural components in that architecture, presented in the following
papers.

Key words: ~ Web applications, architectural overview, 3-tier model

1. MOTIVATION

Web applications are an interesting target for security attacks on the
Internet. They are easily accessible through the HTTP-protocol, and often
company-critical assets are part of the web application infrastructure.
Moreover, while web applications infrastructures are fairly complex, basic
technology for building web applications is easily accessible. Hence, web
applications are often designed and built by developers with little or no
distributed system security background. Therefore, useable guidelines for
building secure web applications are highly useful.

This document describes a generic architecture of modern web
applications, as commonly used in practice by Independent Software
Vendors. Hereby, the most commonly used components within the
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infrastructure and their interactions are presented. The goal of this document
is to define a common architectural view for web applications, which can be
used to conduct a thorough threat analysis for each of the infrastructural
components. Such an analysis will be presented in the following papers ([6.
7,8,9,10]), and will serve as the basis for a set of guidelines to support
Independent Software Vendors in building secure web applications.

2. WEB APPLICATIONS

In the early days of the World Wide Web, web servers offered static
content to end users visiting the website with a browser. But today, static
web servers are more and more replaced by web applications: dynamic
websites that use the browser as a user interface to a server-resident
application. Typical examples of such web applications are e-commerce
sites, or front-ends to business processes, databases or existing legacy
systems.

A variety of technologies for building web applications exists today.
Older technologies such as CGI (common gateway interface) provided a
simple standardized interface between a web server and an existing
application. The application was started on the web server for every dynamic
request in order to process the request, introducing a big startup and
shutdown overhead. In newer technologies such as Java Servlets, JSP and
ASP.NET, dynamic requests are handled by components that can be plugged
into the web server. The real processing work can be delegated to a separate
application server, leading to better performance and manageability.
Moreover, the application server can offer support for non-functional
requirements of the application such as transactional behavior,
synchronization, access control and so forth.

Because of these advantages and the widespread adoption of application
servers in building complex web applications, only this last technology is
considered in this document.

Web applications are distributed applications [11], using the HTTP
transport protocol. The system architecture is a client-server model. Both the
client (e.g. a rich client) and the server can take part in the processing of
information, known as client side and server side processing.

In this paper, we distinguish between web applications and web services.
Web services expose functionality through an XML-based messaging
protocol (most often the SOAP protocol [13]), and are very often run on top
of HTTP. Whereas web applications are intended to be used by end-users
through a standard browser, web services are intended to support machine-
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to-machine communication over the Internet. Web services can be an
important infrastructural component for building web applications.

3. ARCHITECTURAL OVERVIEW

Our generic web application architecture consists of a client at the end-
user side, and a 3-tier processing server side (presentation tier, business tier
and back-office tier) as shown in Figure 1. Firewalls can be placed between
each tier to enable network perimeter security. Often, this architecture is
simplified by omitting FW3 and/or FW2, and by implementing two or more
tiers on the same machine. Also, in some deployments the authentication
server is directly connected to the web server.
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Figure . Architectural overview '

3.1 Client tier:

Basically, the client tier consists of a recent web browser, possibly
extended with client-side application components downloaded from the web
server (such as Java Applets or .Net assemblies). In the latter case, the client
is referred to as a rich client within this document. The client tier interacts
with the web server through simple HTML over HTTP, or, in case of a rich
client, the client can act as a web service entity and use SOAP over HTTP
interactions with the web server.

Furthermore, the client can be equipped with a smart card reader to
interface with a smart card or other security token. Such tokens can be used
among others for authenticating the user and protecting the requests.
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3.2 Presentation tier:

The presentation tier is responsible for formatting the processed
information before returning it to the client, and for handling client requests
by performing input validation and delegating them to the appropriate units
within the business tier. Usually, the processed information is formatted
using the markup languages HTML (in case of a client browser) or XML (in
case of a rich client).

Infrastructural components within the presentation tier are typically the
web server, sometimes accompanied by a web connector of the application
server.

3.3 Business tier:

The business tier contains the application server. The application server
implements the actual business logic. In order to achieve its functionality,
several services can be provided to the application server from the back-
office tier.

The web server from the presentation tier can interact with the
application server by using remote procedure calls, web services or a
proprietary application server protocol.

34 Back-office tier:

The back-office tier provides some basic services to the business tier,
such as a database system and an authentication and directory service. The
SQL query language is mostly used in requests towards the database system,
and LDAP [14] in communication with the directory service. The
communication protocol for the authentication service depends on the
authentication system used (e.g. Kerberos [12]).

The back-office tier can also contain back-end systems including
mainframes, wrapped legacy applications and interfaces to remote
application servers.

The architecture presented here does not include some of the more
advanced features of web applications, such as the dynamic discovery of
services, business integration and associated trust relationships. These
features are out of scope for this document, as this is typically not an
Independent Software Vendor task.
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4. A SIMPLE EXAMPLE

In this section, our architecture for web applications is mapped to actual
technologies on Microsoft platforms. Each entity is assumed to be equipped
with a recent version of Windows (for instance Windows XP on the client,
and Windows Server 2003 on the servers). An architectural overview is
illustrated in Figure 2.
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Figure 2. Architectural overview instantiated with Microsoft technologies
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The client system has a recent version Internet Explorer and the .NET
framework. The client interacts with the web server using simple HTML
over HTTP or SOAP over HTTP. In the latter case, the client downloads and
executes .NET assemblies within the browser. The client can use a smart
card reader for authentication and encryption purposes.

The presentation tier hosts a web server running IIS and ASP.NET. The
web server interacts with an application server in the business tier, using web
services. The application server runs IIS, ASP.NET, COM+, ADSI, Visual
Basic etc.

A directory server, a database server and a remote application server are
Jlocated within the back-office tier. The directory server in a Microsoft
environment is typically Active Directory. The business tier uses SQL to
interact with the database server, running SQL Server. Connection to a
remote application server or wrapped legacy application is done via SOAP.
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Abstract: Threat analysis of a web application can lead to a wide variety of identified
threats. Some of these threats will be very specific to the application; others
will be more related to the underlying infrastructural software, such as the web
or application servers, the database, the directory server and so forth. This
paper analyzes the threats that can be related to the use of web services
technology in a web application. It is part of a series of papers, written by
different academic teams, that each focus on one particular technological
building block for web applications.
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1. INTRODUCTION

Analyzing and modelling the potential threats that an application faces is
an important step in the process of designing a secure application. Some of
these threats are by nature very specific to the application, and one can only
give quite general guidelines on how to identify such threats. But other
threats are directly or indirectly related to the underlying platforms,
technologies or programming languages. Hence, it makes sense to identify
and document these technology-specific threats, and to provide guidelines to
software vendors on how to mitigate the associated risks.

This paper reports on the results of such an analysis for the use of web
services technology in web applications. It is part of a series of papers
[1,2,3,4,5], written by different academic teams, that each focus on one
particular technological building block for web applications. Each of these
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papers (including this one) starts from the generic architecture for web
applications presented in [1].

2. WEB SERVICES

Web services are a more and more common building block in modern
web applications. This section gives a short introduction to web services, and
describes how they can be used in web applications.

2.1 Web services

A web service is essentially an XML-messaging based interface to some
computing resource. The web services protocol stack consists of:
¢ Some transport layer protocol, typically HTTP.
o An XML-based messaging layer protocol, typically SOAP [9]
* A service description layer protocol, typically WSDL [10]
e A service discovery layer protocol, typically UDDI [11]

In this document, the assumed web services communication model is
SOAP over HTTP. Basic SOAP interactions are asynchronous and
unidirectional, but can be combined to implement request/response
processes, or even more sophisticated interactions.

- SOAP messages are XML based messages for exchanging structured and
typed information. SOAP can be used to implement RPC, but the focus
shifts to document based information flow in recent web service
development.

Next to the originating and receiving node of a web service, intermediate
nodes can be defined, as shown in Figure 1. Those intermediate nodes can
process the SOAP message, and add extra information to the message (such
as a signature on a part of the message).
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Figure ]. Process flow of a SOAP message.

This document also makes the assumption that WSDL is used to specify
the public interface to a web service. A WSDL-based description of a web
service can include information on available functions, typing information
and address information. WSDL is usually generated by tools, not by hand.
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The use of dynamic discovery of web services in web applications is not
vet widely used. Hence this document does not consider the service
discovery layer.

2.2 Web services in web applications

A generic architecture for web applications is presented in [1]. Within
this architecture for web applications, the technology of web services can be
used for a variety of purposes. Some examples include:

1. Wrapping legacy applications: Incorporating legacy application
functionality within a web application is often done by giving the legacy
application a web service fagade, which can be used by the application
server.

2. Better web server — application server separation: If the web server
communicates with the application server by SOAP/HTTP instead of
RPC, the firewall between the DMZ (containing the web server) and the
middle tier only needs to open port 80.

3. Rich Clients: The browser can download client-side application
components (such as Java Applets or .NET assemblies) from the web
server. These components can then interact with the web server using
web services.

4. Integration of building block services: Reusable application services such
as authentication or storage can be made available as web services and be
used in a variety of web applications.

5. Multistage processing: Web services support an asynchronous messaging
model. A single request can traverse multiple intermediaries before
reaching its final destination. For example, an authentication server as
intermediary can authenticate the SOAP message before its arrival at the
application server.

6. Virtual organizations: Web services can be used for business-to-business
integration, creating useful federations of autonomous entities.

Since this paper intends to provide guidelines for Independent Software
Vendors building web applications, we assume that the last scenario will be
less common. Instead we focus on the most important threats in the other
scenarios in the remaining of this paper. These scenarios do not use some of
the more advanced features of web services, such as dynamic discovery of
services and UDDI. Hence, our threat modelling does not consider these
features either. This assumption seems to be in line with the Microsoft
Threats and Countermeasures guide [8].
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3. OVERVIEW OF ASSETS AND THREAT
CATEGORIZATION

This section starts with an overview of the important assets within a web
services based web application. Next, a generic classification of threats
associated with web services is presented. The section ends with an
overview of the attack entry points of web services within a web application.

3.1 Assets

The assets to be protected are subdivided into:

o Application specific assets: The data and procedures in the server
systems are the main assets, possibly spread over all three tiers.
Since we make an abstraction of the application, these cannot be
detailed further. For a specific application, further analysis is
necessary.

o Web service specific technology artifacts. These include elements
such as WSDL files, assemblies implementing client and server
calls, SOAP messages and so forth. The threats to these assets are
the web services technology specific threats. Threats to these
assets usually lead indirectly to threats to application specific
assets (e.g. leaking of an assembly might give an attacker the
necessary information on how to attack a back-end system, a
SOAP message will usually include application specific
information, tampering with a WSDL file may enable service
spoofing, and so forth.)

e Private information on the client machine

o Availability of the various machines, connections and services in
the architectural picture.

3.2 Overview of possible threats

We follow the STRIDE threat categorization [13] for systematically
enumerating the threats. In this section, we discuss in a generic way the
threats present in a scenario with a single web service consumer and a single
web service provider.

1. Spoofing: Whenever the communication line between the web
service consumer and provider crosses a trust boundary, there is
a threat of spoofing. Both the provider and the consumer can be
spoofed.

2. Tampering: Tampering can be done while data is on the
communication channel, while data resides on the consumer
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machine, or while it resides on the provider machine. For web
services in particular, targets for tampering are the SOAP and
WSDL files, the executing code at both consumer’s and
provider’s side, and application specific data on the consumer or
provider.

3. Repudiation: Repudiation threats are by nature application-
specific and are not further detailed here. Web services do
provide countermeasure technologies here, such as XML
signatures.

4. Information disclosure: Information can leak during
communication, or while being stored on consumer or provider
machine. Similar to the tampering threats, targets for information
disclosure are the SOAP and WSDL files, the executing code at
both the consumer’s and provider’s side, and application specific
data on the consumer or provider.

5. Denial of service: Denial-of-service attacks try to disturb the
services by overloading the communication line, or by enforcing
a crash or ungraceful degradation of the consumer or provider.

6. LElevation of privilege: An elevation of privilege can occur on
both the consumer’s and producer’s machine.

33 Attack entry points

On the architectural overview in Figure 2, the possible places where there
can be a web service consumer and provider combination are indicated. For
each of these web-service instances, each of the generic threats discussed in
the previous section is potentially relevant, thus leading to a very high
number of potential threats.
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Figure 2. Attack entry points.
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4. LIST OF THREATS

In order to keep the list of identified threats reasonable in size, we present
only the most relevant threats in this section. For those threats, only a short
overview is given here. More details can be found in [14].

To be able to identify the most relevant threats, we make two
assumptions. Firstly, we assume that the company network and the servers
are secured according to best practices. We do take into account that an
internal attacker might get company network access, but with no privileges
on any of the server systems. As a consequence, we consider it unlikely that
an attacker can get direct access to state kept on any of the server machines.
(Of course, indirect access is still possible, e.g. an application exception can
leak information to clients.)

Secondly, we assume that attacks will be directed to the server. We do
not consider attacks to the client. The rationale for this is that the web
application designer/architect typically is concerned with protecting server
assets, and does not have much control over the client software anyway.

The threat analysis is done on web applications, running on a Microsoft
platform, as introduced in Section 4 of [1].

4.1 Spoofing

Given the possible instances of web services within the web application,
the scenario where the client is spoofed in its communication with the web
server is considered the most relevant. Weak or no authentication of the
client can lead to unauthorized access to the web service.

Two other relevant spoofing threats can occur if the web service crosses a
trust boundary. If the DMZ cannot be trusted, there could be a spoofing
threat between the web server and the application server. If the application
server communicates with a remote application server, there is a
considerable spoofing threat in both directions (see [12] for further
information).

4.2 Tampering

The highest risk for tampering exists at the client side. An attacker can
tamper with all assets residing on the client machine or traveling over the
HTTP channel. This leads to the following threats that are considered most
relevant in this category. 7
e A SOAP message is replayed, leading to the unintended duplication of a

server action or to inconsistencies on the server.
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e A SOAP message is tampered with or maliciously constructed, leading to
a whole variety of problems on the server side, such as information
disclosure due to thrown exceptions or violations due to malicious input
(e.g. SQL injection attacks to the database).

e The WSDL-file sent to the client, containing essential contact
information (such as URLs) is tampered with. Changing this information
can mislead the client.

e The rich client is reverse engineered and modified. In a rich client
scenario, an attacker can gain valuable information by analyzing the
browser extension sent to the client. Modifying this extension can enable
an attacker to bypass input validation checks, or to construct malicious
SOAP calls.

Depending on the context of a particular application, the threat of
modifying state information on the servers could be important, but is not
further detailed in this document. In particular in the scenario where the web
application allows remote upload (or modification) of the content or
functionality of the web application, modification of the state information on
the server could be an important threat.

4.3 Repudiation

Repudiation threats are by nature application-specific and are not further
detailed here. Web services do provide countermeasure technologies here,
such as XML signatures.

4.4 Information disclosure

The highest risk for information disclosure exists again at the client side.
An attacker can read all assets residing on the client machine or traveling
over the HTTP channel. This leads to the following threats that are
considered most relevant in this category:

e SOAP messages are disclosed, possibly leaking application specific
information such as credit card numbers to an attacker.

e WSDL files are unnecessarily disclosed, giving the attacker information
about the application structure.

e Web service implementation leaks information about application
internals, for instance by sending stack trace information on errors.

Depending on the context, additional threats that are not detailed in this
document could be relevant. In particular, weak host or network security
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could lead to disclosure of web services specific information such as the files
containing the web service code (the .asmx files).

4.5 Denial of service

We consider server denial of service the most relevant threat in this
section, causing the server to crash or to degrade ungracefully because of a
malicious SOAP call.

In addition, sending a client a malicious assembly in a rich client scenario
could do denial of service on that client. Also communication overload could
be a threat.

4.6 Elevation of privilege

Again, our focus is on elevation of privilege on any of the servers. We
consider the most relevant threat to be the scenario where a web service
wraps a legacy application. This can possibly expose legacy software
vulnerabilities: the wrapping web service essentially provides a
communication path from the Internet to an application written without this
connectivity in mind.

S. DESIGN GUIDELINES FOR
COUNTERMEASURE SELECTION

A multitude of security technologies is available to counter the threats
identified. One of the key challenges for a designer is to make a sensible
selection of such countermeasure technologies. In this section, we give an
overview of countermeasure technologies, and we provide guidance on how
to select appropriate technologies.

The guidance is structured as follows: for each kind of countermeasure
we summarize the issues and questions a designer should keep in mind while
selecting a technology for implementing that countermeasure, and we give a
short overview of the available technologies with their properties.

5.1 Authentication
Authentication counters spoofing threats.
Questions/issues:

¢ Do you want to authenticate a user or a machine?
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Do you want entity authentication or message authentication? Entity
authentication provides evidence that a given entity is actively
participating in this communication session, while message
authentication provides guarantees about the originator of a message.

Do you need to propagate the authentication through delegation? If your
service relies on other services, you may need to authenticate the client
to the other services. Not all authentication technologies support this
kind of delegation.

What assumptions can you make about the authenticated party (e.g. can
you install software on the authenticated party’s machine)?

What is the number of users? Some authentication technologies scale
better than others.

Does your application need access to authenticated identities? Some
authentication technologies do not provide an API to retrieve
authenticated identities at the application level.

Do you need to integrate in an existing infrastructure? If an
authentication infrastructure is already in place, it is probably a good
idea to reuse it.

Security versus ease-of-use? Security mechanisms that are not easy to use
can cause the end users to either make mistakes or ignore them
altogether.

Related to data protection and authorization needs: authentication is often
done as a precursor to authorization. So make sure authentication and
authorization technologies work seamlessly together. Similarly, data
protection is often combined with authentication.

Available technologies:

At the network level, use IPsec. IPsec authenticates machines, but does
not provide an API for passing identities to applications. IPsec requires
OS support (available from Windows 2000 and up).

At the transport level, use any of the HTTP authentication mechanisms
(basic, digest, forms, passport, integrated windows, or SSL client
certificate). For a discussion of the advantages and disadvantages of
each of these authentication mechanisms, see [6].

At the application level, use WS-Security, or XML digital signatures on
SOAP messages. XML digital signatures can provide message
authentication, but require an infrastructure to manage client certificates.
Single-sign-on infrastructures such as Microsoft Passport can support the
web application in authenticating the client.
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e An intermediate authentication and/or authorization server can be used
within the web service flow to check the user identity and to approve
credentials.

Example designs:

e Basic HTTP authentication over an SSL protected channel is often used
for client to web server authentication.

e [Psec is a good choice for mutual authentication between web server and
application server.

5.2 Data protection

Data protection counters tampering and information disclosure threats for
data in transit.

Questions/issues:

e Do you need selective encryption? Is it feasible to protect all content in
the same way, or do some parts have different protection requirements
than other parts?

e End-to-end or hop-by-hop? Are all intermediates that process the
messages trusted, or do you need protection from potentially
untrustworthy intermediates?

* Do you cross a Network Address Translation (NAT) device? Some data
protection technologies cannot cross NAT boundaries.

e Related to authentication mechanism: often session keys for data
protection are negotiated as part of the authentication process. Make sure
you keep in mind these dependencies.

Available technologies:

e At the network level use 1Psec/ESP. This is hop-by-hop, non-selective
data protection. IPsec does not mix well with NAT.

e At the transport level use SSL or RPC Packet Privacy. Again hop-by-
hop, non-selective data protection. SSL can cross NAT boundaries.

e At the message level, use XML encryption of (parts of) SOAP messages.
This is the only technology providing selective protection and end-to-
end protection.
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Example designs:

e SSL is the typical choice for data protection between client and web
server.

e Message level protection is needed in some multistage processing
scenarios.

5.3 Authorization

Authorization counters tampering and information disclosure on data
residing on servers. Authorization can also counter elevation of privilege or
denial of service.

5.3.1 Questions/issues:

o What information do you need to make authorization decisions? Do you
base access control decisions only on authentication information, or also
on application state information?

e What is the granularity of the assets you are protecting access to? Do you
need to control access to the application, or to specific functionalities
within the application, or to specific objects in the application?

¢ Do these objects that need protection map naturally on operating system,
web server or database resources?

¢ Do you need to integrate in an existing infrastructure?

How will the access control policy be managed?

* Authorization technology is related to the authentication mechanism (and

identity flow), as discussed in section 5.1.

5.3.2 Available technologies:

e At the machine level, by restricting access to a set of IP addresses (using
IPsec, 1IS or a firewall). This is a very coarse-grained access control.
Keep also in mind that IP addresses can be spoofed to fool 1IS access
control.

e At the URL level, by configuring IIS. IS can leverage the Windows
access control mechanisms for restricting access to web server files.

o At the application server level, by using .NET or COM+ mechanisms for
role-based access control.

e In the application code itself: application code performs the necessary
authorization checks, possibly calling a centrally managed authorization
engine. See [7] for a detailed discussion of application managed
authorization.
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e An intermediate authorization server can do access control or prove the
client’s authority.

5.3.3 Example designs:

e Each of the server machines could use IP-based access control to make
sure the server machines are only accessible from expected machines.

e Role-based access control for protecting web application functionality
from clients.

5.4 Input validation
Input validation potentially counters any of the STRIDE threats.
Questions/issues:

e As data flows from client to back-end or from client to other client, who
will sanitize the data? Consider all data flows originating from an
untrustworthy source and make sure they are validated somewhere.

o s there a strict XML schema describing allowable input? If so, this can
be used as a basis for validation. If not, provide a description of
allowable input using other means such as regular expressions.

e Where does untrustworthy data go? If it goes to the database, SQL
injection is a possible threat. If it is echoed to clients, cross-site scripting
could be an issue. If it goes to a wrapped legacy application, there is a
threat of buffer overflows.

Available technologies:

e Validating XML parser.
¢ Regular expression API’s.

5.5 Other countermeasure technologies

We briefly summarize other countermeasure technologies. For more
detail, we refer to [14].

e Nom-repudiation: Non-repudiation counters the repudiation
threat. This can only be done meaningfully at the application
level. Possible technologies include XML signatures and
application-level auditing.
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o Sandboxing: Sandboxing counters elevation of privilege threats,
and can be provided by the operating system (process separation)
or by NET Code Access Security.

e Secure coding: Secure coding counters all kinds of threats. It is
not further discussed here, since it is not a design time
countermeasure. See [13] for more information.

o [Intrusion/fraud detection: Intrusion or fraud detection counters
all kinds of threats. As a designer, the process of detecting
intrusions or fraud can be made easier by providing good,
application-level audit data.

o Availability related countermeasures: These countermeasures
counter denial-of-service related threats. Available technologies
include filtering (rejecting unacceptable requests as quickly as
possible, e.g. by using firewall rules) and throttling (limiting the
number of unauthenticated requests to your application).

6. CONCLUSION

Threat modelling and countermeasure selection are important steps in an
engineering process for building secure software. Documenting the threats
inherent in the use of specific technologies and guiding designers in the
selection of countermeasures to these threats can make these steps
significantly easier. This paper reports on the results of an analysis of the use
of web service technologies for web applications from this perspective. The
most relevant threats are identified, and rough guidelines on how to mitigate
the associated risks are provided. Threats, vulnerabilities and risks are
described informally. A potential direction for future work is a more formal
description, for instance in a UML profile for risk analysis, such as CORAS
[15,16].
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Designing Secure Applications

Ridiger Grimm and Henrik Eichstadt
University of Technology, llmenau, Am Eichicht I, D-98 693 llmenau

Abstract: This paper gives a security analysis of Microsoft's ASP.NET technology. The
main part of the paper is a list of threats which is structured according to an
architecture of Web services and attack points. We also give a reverse table of
threats against security requirements as well as a summary of security
guidelines for IT developers. This paper has been worked out in collaboration
with five University teams each of which is focussing on a different security
problem area. We use the same architecture for Web services and attack
points.

Key words: web services; asp.net; client-server; security; threats; web application; data
storage; threat countermeasures.

1. INTRODUCTION

A Web service is a network of coordinated applications in the backend
behind an http-governed Web server. The Web server is addressed by http-
clients across the Internet. ASP.NET is one example for the coordination
technology. However, the security analysis holds for Web services in
general, not only for ASP.NET.

ASP.NET provides a set of components for developers to implement
complex functionality in DLL. It is scalable, in that it provides state services
to manage session variables (cookies, session ids, temporary URLS) across
multiple Web servers in a server farm. It is stable, in that it can detect
application failures and recover from them. It addresses both “managed
code” (conformant to ASP.NET), as well as “unmanaged code” (“native
code”) to include “legacy” applications. It is performant, because ASP.NET
pages are compiled whereas ASP pages are interpreted. When an ASP.NET
page is first requested, it is compiled and cached, or saved in memory, by the
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NET Common Language Runtime (CLR). This cached copy can then be re-
used for each subsequent request for the page. After the first request, the
code can run from a much faster, compiled version, see Butler, Caudill [1]
for details.

In this paper we will use an abstract Web services model which allows us
to identify different sources and targets of attacks. On the basis of our attack
analysis we will provide a structured view on security guidelines which help
developers to avoid the most obvious security holes. The security holes
derive mainly from the fact that any kind of Web service resides within the
open world of Web usage. They are not specific to ASP.NET. However,
ASP.NET is an obvious example of a Web services framework.

2. ARCHITECTURE PREREQUISITES

We will base our security analysis on a rather abstract structure of
ASP.NET technology which we will refer to as our Web services model. It
consists of these four building blocks, which could reside either on the same
or different hardware components:

1. a'pure' ASP.NET component (which serves as a 'gate' between the web
server and source code; external components can only be connected from
this ASP.NET-component);

2. an 'external' component built with C#, VB or any other language using
the Common Language Runtime (CLR); this is so-called ‘managed
code’;

3. an 'old', external component being integrated into the Web service —
possibly not integrated into the Common Language Runtime (CLR); this
is so-called ‘unmanaged code’;

4. database(s).

Our Web service structure is a refined version of the architecture model
in [2]. We have explicated the application server part by adding application
details and communication relations between the components. The structure
is shown in Fig. 1 below.

We will not analyse the internal functional structure of the four
components any deeper. In this sense we will consider the Web services on
the ASP.NET technology as a ‘black box’: it reacts on input data (both
stored and communicated), and it creates some output data (both stored and
communicated). Therefore it is inserting, updating, checking and/or deleting
data of any kind.

In this Web services model, several assumptions are made which are to
be respected by application security policies in the first place. First, our
focus is on ASP.NET technology, therefore we address only the Web



Threat Modelling For ASP.NET 147

service. Other services such as FTP, Sendmail, or Telnet are also security
relevant, but out of scope of this paper. Furthermore, we assume that the
Web Server is organised as follows.

1. A firewall protects the Web Server from the Internet which contains a
positive list of ports and protocols to be accepted.

2. The Web Server accepts and responds to “valid’ http(s)-requests only;

a) ‘valid’ are requests with correct hitp syntax, and the URLs of which
are within an explicitly accepted name space;

b) ‘validity’, however, does not refer to parameter content; on this level,
parameter content is not checked and will therefore be addressed by
our attack analysis below.

3. On an operating system level the Web service is configured according to
these minimal security requirements:

a) only a minimal set of components and applications is installed: e.g., if
not explicitly needed, no ssh / sendmail / telnet / ftp etc. service is
addressable through this Web Server; no client browser is available
within the Web service;

b) rights management within the Web service follows the least privileges
principle for the relationship ‘userid — application’;

c) a minimal set of users (potential attackers) has access to the internal
network: with respect to the relationship ‘persons — userid’.

3. ATTACK ENTRY POINTS

3.1 SOURCES AND TARGETS

In order to identify attack points, two aspects are to be addressed: sources
(“who attacks™), and targets (“what is attacked?”). Attackers may reside
inside or outside the server (“sources™). They may aim at assets of the server
or of the client (“targets™). Servers do not only organise their own assets, but
also assets of clients, for example account levels, private information, or an
achieved status of a purchase. An attack on the server can, therefore, also be
an attack on a resource inside the server which represents a client’s asset. It
is in the interest of the server to protect both its own assets (e.g. received
payment), as well as the assets of its client as far as it is responsible for
them. Otherwise, a server will lose reputation, or even be liable for losses of
its clients.
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3.2

ATTACK POINT SOURCES

Attacks can be pushed from outside as well as from inside the Web

service-network. In a refined view of the Web services model, presented
below in Fig. 1, the following six attack sources can be identified:

1.
2.

w

attack from an external aggressor via the standard http(s)-gate

Web service attacking the client (delivering malicious code, misuse of
personal data)

attack from an external aggressor circumventing the ASP.NET gate (=>
firewall and webserver are not secured properly)

attack from an internal aggressor via the internal network

security risks by connecting unmanaged code (native) applications

attack from an aggressor application nested inside the Web service
structure. This could be any kind of application as database, (web)server,
operating system program or any other application.

Figure 1. Possible attack points on Web services

There are two general directions of attacks:

Server is being attacked: The target of attacks of a client against the
server may be (a) the assets of the server, e.g., the client retrieves an
electronic good without paying for it. Or the target may be (b) the assets
of another client through a manipulated server, i.e. by retrieving an
electronic good which another client has paid for and who is then
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prevented from receiving it (impersonation, or stealing of privilege).

Case (b) is an attack against the client via an attack against the server, i.e.

the attacked client will observe an attack of the server, while the server

itself was attacked in order to attack the other client.

e Client is being attacked: The target of attacks against the client that will
be considered here are always the assets of the client, e.g. his privacy, his
money, his knowledge, his privileges, etc.

The following kinds of attack are out of scope of this paper: Servers
which attack clients in order to attack other servers through the manipulated
client. This can be done either by using the clients’ credentials, or by using
client resources. The aim would be to enforce attacks (DDoS), or to blame
the service provider for an insecure service.

Why is it important to analyse attacks on the client by the server? At first
glance, the server is simply regarded as decent, and so there is no point in
considering this case. However, there are two reasons why a server (and
even more a decent server) is interested in protecting its clients against
attacks through the server:

1. Servers want to protect their reputation against suspicion. For example,
shops provide read-access to purchase status points, they provide read-
and write-access to personal data of their clients (each client only
accesses his data), they reveal their privacy policy, they offer privacy
mechanisms like P3P, they sign their parts of obligations (like payment
receipts), etc. Servers will also have to make clear to their clients that
insider attacks are minimized, e.g. by 4-eyes-principle access rules, or
other security-certified mechanisms.

2. Servers must be aware that unauthorised intruders (outside attackers)
compromise the system in order to attack other clients. From the point of
view of a server, this is an outside attack against the server, covered by
analysis in case 1 above. From the point of view of the client, however,
this is an attack of the server on his assets. Servers must make clear how
they minimize this danger.

4. ASSETS VS. ATTACK TARGETS

For a general security analysis of the ASP.NET technology, no concrete
assets can be identified, because the technology is not restricted to a specific
type of application. Instead, we consider general, abstract assets being in the
focus of attackers. In supplement to the Microsoft STRIDE-categories (see
[3]) of attack targets, we suggest to introduce the common IT security
requirements (see [4][5]) as abstract assets of all ASP.NET services:
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Availability
Confidentiality
Integrity
Authenticity

Accountability (non repudiation)
These requirements can be understood as abstract assets. The assets can

be mapped one-to-one on threats, in that threats are understood as negative
requirements.

4.1 IT SECURITY REQUIREMENTS VS. STRIDE
ATTACK TARGETS

The same requirements (assets) can be broken (enacted on) by multiple
attacks [7]. The abstract assets (i.e. the IT security requirements) can be
mapped on the STRIDE categories of attack targets via this matrix:

Table 1. common IT security criteria vs. Microsoft’s STRIDE concept

£ £
2z g £ e
= = 2 8
g 5 ] E] 3]
< o] = < <
Spoofing X X X X
Tampering X X X
Repudiation X
Information disclosure X
Denial of service X
Elevation of privileges X X X X X

5. LIST OF THREATS / ATTACKS

There are three ways to structure attacks:

Attack points oriented (as in Fig. 1 above)

2. Assets/Threats oriented (IT security requirements as abstract assets)
3. Attacks oriented (Microsoft’s STRIDE)

We have introduced attack points in Fig. 1 above in the section on attack
entry points. Assets/Threats were introduced by abstract IT security
requirements in the previous section on assets vs. attack targets. Attacks are
introduced by the STRIDE model. In Table 1 of that section we have
mapped assets (IT security criteria) on attacks of STRIDE type.

—
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As the same threats can be enacted by multiple attacks, we have decided
to follow the attack points orientation, because there is least redundancy - the
following list of threats is thus ordered by attack points. In order to keep up
with the STRIDE structure, we offer a reverse table of attacks vs. our attack
numbers at the end of the attack list in this section.

The threats in this list are numbered according to the following scheme:
AST represents ‘ASP.NET Threat’, the first digit refers to the attack point,
the last two digits represent the numbering of the threats inside the attack
point. Appended to the threat title is the STRIDE-classification displayed by
the initial letter(s) of the applicable STRIDE-category(ies) in parenthesis.

There is one type of threat which can be realized at any point of the Web
service. This threat may be a side effect of the other threats listed below or
may be applied as preparation of any other threat.

ASTO001: Provoke errors to reveal system information (I)

Description: The attacker 'misuses’ the Web services to provoke the
generation of error messages. These messages can be used to gather detailed
system information for further attacks.

Countermeasures: Only general/generic error messages should be visible
to the client and should not disclose any specific information about the
internal system and the nature of the error. Detailed error messages are to be
written into a logfile.

5.1 Attack point 1: External Attacker

The most likely way to attack a Web service is to construct input data
contrary to the intention of form(field)s.

5.1.1 AST101: any input data is sent to the application (RI)

Description: The attacker fills in data into html-forms that is not intended
by the application. False information and executable code could be used to
manipulate the application.

Countermeasures: A server-side validation of input data is necessary.
Use .NET validation server controls for this task. Additionally, storage of
'false data’ can be avoided by checking the data against a 'valid' database. As
a minimum, SQL-Syntax should be denied.



152 Ridiger Grimm and Henrik Eichstadt
5.1.2 AST102: Manipulating form parameters (TRID)

Description: False input data is carefully crafted and sent to the server by
manipulating the http-request (either by building a URI with parameters
[GET-method] or manipulating the http-body [POST-method]).

Countermeasures: In addition to the AST101 countermeasures, the form
data could be checked to be sent by the POST-method (if action is set to be
POST). The session-identifier should be authenticated with additional data
(e.g. IP-address) and/or the application should re-ask for authentication
credentials in case of critical actions.

5.1.3 AST103: Uploading malicious program code (STRIDE)

Description: Some code file containing malicious code is uploaded using
an upload form. Subsequently the attacker gets to know the save folder on
the server and tries to execute his code or the uploaded file is processed by
the server and thus executed.

Countermeasures: The execution of uploaded files has to be denied
(either stand-alone execution on the server or HTML-inline execution).
Uploaded files should be validated not to be code, the target folder for
upload files should be secured - no (direct) access via http. Uploads could be
filtered by denying file types with possibly included code/allowing file types
from a positive list.

5.2 Attack point 2: Web service attacking client

Though no direct threat to the server, this threat is mentioned because it
represents a threat to the servers trustworthiness.

5.2.1 AST201: non-transparent data gathering (I)

Description: The Web service collects data from clients (required form
input) that is not or barely necessary for the applications purpose.

Countermeasures: Forms should be constructed in a way that only
minimal, necessary data is required. In addition, transparency tools can be
used (P3P: publish privacy policies, privacy audit label).

5.2.2 AST202: Web service delivers malicious code (STIE)
Description: The Web service creates and sends code that forces the

client to crash. As this could (but needs not) be code created by an attacker,
AST103 is a possible origin of this threat.
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Countermeasures: Carefully create Web service (HTML-/script-) output
and avoid additional/plugin media/technology where possible. Before
delivering any code, check if the client supports the needed technology and
offer alternative technology.

5.3 Attack point 3: ASP.NET-gate circumvented

As ASP.NET serves as ‘gateway’ to the web applications, threats could
be possible by contacting applications without ASP.NET intervening.

5.3.1 AST301: Reveal location of subordinate application (I)

Description: An attacker causes the server application to generate output
that exposes the location of subordinate applications, databases etc.

Countermeasures: Force the applications to receive input data through a
central, filtering application that is redirecting the data on the server-side.

5.3.2 AST302: Execute subordinate application directly (STRIDE)

Description: An attacker executes a subordinate application that is
intended not to be executed from outside.

Countermeasures: This should not be possible due to the prerequisites.
Subordinate applications should be configured not to be executed from
outside the Web service. Establish trust management on the server by
defining a 'need-to-know' access rules matrix for internal applications
(read/write).

5.4 Attack point 4: Internal aggressor

The Web service files could be accessed by an internal attacker being
connected to the company network. As a consequence, the www-interface is
avoided by accessing the Web service structure from the internal network.

5.4.1 AST401: Accessing applications with internal authentication
data (STRIDE)

Description: An attacker from inside the network accesses/executes
components with 'insider' privileges. Manipulation of data/communication
could be possible with those access rights.

Countermeasures: Web service components should only be executed
with restricted privileges. Additionally, a sophisticated rights management
prevents execution by real users (run as special, 'virtual' user only). Using 4-
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eyes principle access rules for very sensitive actions and data secures those
areas.

5.4.2 AST402: Accessing stored data (TRIDE)

Description: An attacker from inside the network accesses data stores
(file system, data base) to get information. The data stored is accessed
directly through OS means, not via ASP.NET.

Countermeasures: Access to data stores should only be permitted to Web
service components.

5.4.3 AST403: Manipulating source code (TIE)

Description: An attacker from inside the network accesses the file system
and manipulates the source code files.

Countermeasures: Limit write access, Sign/create hash values for
component files and deny execution if authentication of component fails.
Additionally, the changes of source code can be logged (logfile, notification
mail ete.).

5.5 Attack point S: Unmanaged Code

As ASP.NET allows the integration of a broad variety of applications,
also ‘old’ code can be used in ASP.NET-based Web services. It is then
necessary to exchange data between these (un)managed code components.

5.5.1 ASTS501: Inconsistent data (ID)

Description: When components running outside the CLR are used, data-
types have to be converted but can’t always be mapped 'perfectly’ between
these components. An attacker could use this to cause components to
malfunction (by generating a complex piece of data).

Countermeasures: Native code should be ported to .NET code ('partial
port’ approach according to [6]) and/or the critical native code should be
rewritten. Exception handling to catch wrong data types should be
implemented.

5.6 Attack point 6: Aggressor application inside Web
service

If some application inside the Web service structure is used to attack the
Web service, this set of threats is conceivable.
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5.6.1 ASTG601: Revelation of data from inside (I)

Description: Web service data-store components / store controls can
easily be contacted by a 'hi-jacked’ component to retrieve stored data.

Countermeasures: Implement system integrity checks (viruses, Trojan
horses), establish a 'need-to-know' access rules matrix for internal
applications (read/write) and define a strong access control. Additionally
check if request originally comes from 'outside’ and is generated by a http-
request through the official, allowed routes. Sign components to prevent
manipulation of the hi-jacked components’ source code.

5.6.2 AST602: Manipulation of data from inside (STRIDE)

Description: Web service data-store components / store controls can be
contacted by a 'hi-jacked” component to manipulate stored data.
Countermeasures: see AST601

5.6.3 AST603: Contacting Applications from inside (STRIDE)

Description: Web service applications can be contacted by a 'hi-jacked’
component (Trojan horse or stolen privileges). The component can request
the service of other applications without any outside-triggered need.

Countermeasures: see AST601. The ‘need-to-know’-rules matrix has to
be expanded to cover the execution of components.

5.6.4 AST604: Revelation of configuration information: (I)

Description: 1f client software (e.g. Browser, .NET Interface) is run on
the server, it is possible for an attacker to gather configuration information
(OS version, .NET runtime version etc.).

Countermeasures: Deny client software to be run on server.

5.6.5 AST605: Buffer overflow (STRIDE)

Description: Buffer overflows are used to attack the server. Especially
Web service components are permanently cached in the CLR using one
memory area. This can be used to cause Buffer Overflows and get access to
the Web service.

Countermeasures: Cause caching to refresh periodically and implement
Buffer Overflow checks. Avoid using unmanaged code.
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6. REVERSE TABLE OF ATTACKS

Table 2. ASP.NET-Threats / STRIDE matrix

S T R I D E
ASTO001 X
AST101 X X X X
AST102 X X X X
AST103 X X X X X X
AST201 X
AST202 X X X
AST301 X
AST302 X X X X X X
AST401 X X X X X X
AST402 X X X X X
AST403 X X X
ASTS01 X X
AST601 X
AST602 X X X X X X
AST603 X X X X X X
AST604 X
AST605 X X X X X X

7. DESIGN GUIDELINES

1. Validate input data on the server side

e Validating on the client side is nice for the user, but insecure for your
application because it can be bypassed ‘

e Server-sided validation can’t be by-passed, check input data to be of
the correct range, expected length and uploaded files to be of the
correct data type or among correct/allowed file types. For this
validation, use the .Net validation controls.

2. Do not insert data again that was input and validated before, without new
validation (only insert and check deltas to previous state)
3. Establish a ‘need-to-know’ access rules matrix

e Which application may connect to another application/to a data storage

e Which application may request what kind of data

e Which application may modify data

4. Sign components and check correct signature (checksum, hash) within
the Web service structure

5. Make sure data can only be accessed via a Web service component
e Especially do not allow direct request of uploaded files
¢ Deny execution of uploaded files

6. Re-ask for credentials if a critical action (modification of user data) is
requested
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7. Use managed code wherever possible
e Convert ‘old’ applications
8. Minimize forms
o Collect only data that is needed by the application — the user will begin
to trust your application
9. Do not reveal internal (configuration / system) data to user
e Error codes delivered to the user have to be generic (‘an error
occurred’, if it is that bad)
o Log error codes in detail to a logfile on the server in a secure folder
10. Have a ‘pure’ server (see prerequisites section)
e No client applications installed
o Only needed services installed / active
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Abstract: In this paper we present the results from an analysis focusing on security
threats that can arise against an SQL server when included in Web application
environments. The approach used is based on the STRIDE classification
methodology. The results presented provide also some general guidelines and
countermeasures against the different attacks that can exploit the identified
vulnerabilities.
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1. INTRODUCTION

In the last few years the use of the Internet has experienced an
exponential growth and the World Wide Web has become the main
instrument for information sharing. Such trends have pushed the
development of a new kind of service architecture, specifically tailored at
supporting data sharing among remotely connected clients, which is based
on the concept of Web Applications. A web application can be essentially
seen as a collection of different entities that collaborate in order to provide
services to remote clients. In such an architecture, a client typically
communicates with external entities using the HTTP protocol.

Various web application architectures have been devised and can be
found in the literature. In this paper we will consider one of the most
adopted, i.e. the architecture includes a database, positioned into a backend
zone, storing all the information needed to provide the service. Since this
data must be accessible from both the internal network and Internet, the
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database is exposed on the web and can thus become a target of possible
attacks [1]. Many of these attacks can be prevented following some
guidelines in the design and development of the web applications. In this
paper, by using the STRIDE approach [2], we analyze the most frequent
threats concerning the database in a generic model of web applications, and
we describe the countermeasures to prevent those threats or mitigate the
damages subsequent to a successful attack.

2. SQL SERVER

SQL Server [3] is a relational database management system which is part
of the Microsoft family of servers. SQL Server was designed for
client/server use and is accessed by applications using SQL. It runs on
Windows NT version 4.0 or higher and is compliant with the ANSI SQL-92
standard. SQL Server supports symmetric multiprocessing hardware, ODBC,
OLE DB, and major open standard communications protocols. It has Internet
integration, data replication, transaction management and data warehousing
features.

The main role of an SQL Server in a web-based architecture is to store
and manage the data required by the authorized web applications. To be
able to access data from a database, a user must pass through two
authentication phases. The first phase is performed by the SQL Server and
the other by the database management system. These two steps are carried
out using logins names and user accounts respectively.

2.1 Authentication

A valid login name is required to connect to an SQL Server instance. A
login could be a Windows NT/2000 login that has been granted access to
SQL Server or an SQL Server login that is maintained within the SQL
Server. These login names are stored in the master database. All permissions
and ownership of objects in the database are controlled by the user account.
SQL Server logins are associated with these user accounts. During a new
connection request, SQL Server verifies the login name supplied to make
sure that the login corresponds to a subject authorized to access SQL Server.
SQL Server supports two authentication modes:

e Windows authentication mode: under this mode there is no need to
specify a login name and password to connect to SQL Server. Instead the
access to SQL Server is controlled by the user’s Windows NT/2000
account (or the group to which the user’s account belongs). Database
administrators can grant access to the database to the user or the user
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group specified in the Access Control List provided by the operating
system. Under this security mode, SQL Server tracks users by their
individual SIDs (Security Identifiers) stored by the operating system
itself.

Mixed mode: users can establish a connection to an SQL server either
using Windows authentication or SQL Server authentication. Under this
authentication mode, the user must supply the SQL Server login and
password when he connects to SQL Server. If the user does not specify
an SQL Server login name and password, or request Windows
Authentication, he/she is authenticated using Windows Authentication.

2.2 Access Control

Accesses to objects in the database are managed by granting the proper
permissions to individual users or by defining user roles. A role is a group to
which individual logins/users can be added, so that the permissions can be
assigned to the group, instead of assigning them to all individual
logins/users. There are three types of roles in SQL Server:

Fixed server roles: these are server-wide roles. Logins can be added to
these roles to gain the associated administrative permissions of the role.
Fixed server roles cannot be altered and new server roles cannot be
created. An example of a fixed server role is sysadmin, which is
authorized to perform any activity in SQL Server.

_ Fixed database roles: each database has a set of fixed database roles to

which database users can be added. These fixed database roles are unique
within the database. While the permissions of fixed database roles cannot
be altered, new database roles can be created. An example of a fixed
database role is db_owner, which has all permissions in the database.
Application roles: after creating and assigning the required permissions
to an application role, the client application needs to activate this role at
run-time to get the permissions associated with that application role. By
using application roles, the database administrator does not have to
manage permissions at the individual user level; he/she simply needs to
create an application role and assign permissions to it. The application
that is connecting to the database activates the application role and
inherits the permissions associated with that role.

23 System Prerequisites

The guidelines discussed in this paper are effective only if the SQL

Server is properly installed, configured and patched. In this section we



162 E Bertino 1, D.Bruschi 2, S.Franzoni 2, [ Nai-Fovino 2, S.Valtolina 2

provide a list of actions that we assume have been already taken on the
database.

2.3.1 Installation recommendations

We assume that the SQL Server has been installed with a least privilege
account. In order to protect the domain hosting the database, the SQL server
must not be installed on a primary or secondary domain controller. Instead,
we recommend dedicating a machine to the database, without additional
services (i.e. Upgrade tools, Replication support Script, Development tools
Headers and library files used by C developers and Microsoft Data Access
(MDAC), etc.) if they are not required. We assume that after the installation
all available patches are applied.

2.3.2 Unused Services

During the installation phase three major services are set up, the
SQLSERVERAGENT, the MSSQLServerADHelper and the Microsoft
Search. These three services are optional and they must be disabled if they
are not necessary. It is also important to notice that the presence of other
services not related with SQL Server on the same machine can jeopardize
the database security. The installation of such services is discouraged if they
are not strictly required.

2.3.3 Unused Protocols

It is a good practice to configure SQL Server to support only clients that
connect using the TCP/IP protocol. All the other unused protocols must be
disabled. A TCP/IP stack hardening can be also taken into consideration.

2.3.4 Accounts

We assume that for all the accounts configured after the installation, the
principle of least privilege has been adopted. The execution of the following
actions should be considered:

Secure the SQL Server service account

Delete or disable unused accounts

Disable the Windows guest account

Rename the administrator account

Enforce strong password policy (length and complexity, expiration time)
Restrict remote logins

Disable null sessions (anonymous logons)
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2.3.5 File system and directory

An important prerequisite for a proper SQL Server installation is a
strongly secure directory and file-system permission management. We take
for granted the execution of the follow steps:

e Verification of permissions on SQL Server install directories.
e Verification that the Everyone group does not have permissions to SQL

Server files.

o Secure setting up of log files.
Securing or removing tools, utilities, and SDKs.

3. ASSETS

The first step that must be taken into account in a threat modelling
process is the identification of the assets that need to be protected. In fact,
they represent the value the attacker is looking for. In our particular case, the
principal asset that we want to protect is the data stored in the database. It
must be pointed out that not all the data stored have the same relevance. For
example, a company can decide to publish on the Web only a partial
database, while the whole enterprise data are kept offline. In such a case, the
loss of the data accessible from the Web is much less serious than damages
to the data stored in the backend database, as we discuss in Section 4. Data
protection involves satisfying two main requirements: the integrity of stored
data and their confidentiality. These two properties have both been taken
into account in our threat modelling phase, as explained in Section 6.

In addition to data, the second fundamental asset that needs to be
protected is the data management service, for which availability is crucial; a
database should always be able to provide the data required to authorized
users.

The data and the data management system can thus be considered the
“crucial” assets of an SQL server, but there are some other assets not strictly
connected with data stored in the database that can be valuable for an
attacker. Some examples are the data accounts of authorized users, the
database system, since it can be exploited for more sophisticated attacks, and
the integrity of the host machines. Weaknesses in a host machine can be
exploited to perform attacks against other machines in the enterprise
network.
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4. ARCHITECTURAL SCENARIOS

We consider two possible scenarios. In the first one, as described in the
architecture overview, the SQL Server is located in the backend subnet. This
is the most straightforward method for providing web access to the database.
The web application server forwards the client requests to the database
across the internal network.

The second scenario is characterized by a general architecture which is
similar to the architecture of the first scenario. The main difference is that
the backend database is not accessible from the web application. The client
can only access a partial mirror database located in another subnet. The
mirror database contains only the data to be accessed from the Internet. In
this way, an attack exploiting the web application or the web server would
compromise only the data stored in the database located in this partial
database and not all the enterprise data. When adopting this configuration,
this database must be synchronized with the backend SQL server, and these
update operations need to be performed in a secure way.

When considering these scenarios, we must take into account that there is
a non-negligible risk: we protect the database from an outside attacker, but
we cannot say anything about an attacker that has already the control of
other servers inside the backend subnet and that can use these servers in
order to start an attack to the SQL Server. This issue can be addressed
assuming that the backend subnet is trusted, or that the database is located in
a dedicated subnet.

The threats concerning the two scenarios are in general the same; what
changes is the difficulty with which these threats can be realized and the
dimension of the final damage. For example, if an attacker can disrupt the
data stored in the SQL server in the first scenario, the enterprise will lose all
its data, with an enormous damage. If the same threat succeeds in the second
scenario, the company will lose only the data published on the public mirror
database, but not the sensitive data stored in the main SQL database.

S. ATTACK ENTRY POINTS

One of the most important issues in threat modelling activity is to
identify the attack entry points of the system being analyzed. Based on the
vulnerabilities of a SQL Server and the above architectural scenarios, we
have identified three attack points:
¢ The client side of the web application: an attacker can use the normal

web interface of a client in order to insert some malicious code or

perform unauthorized or dangerous operations. It is very difficult to
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6.

control this entry point. The main problem is that it is not possible to
make any assumption about the client identity. Moreover we generally do
not have control over the configuration and security of the client
machine. Thus the client machine can be trojanized and controlled by a
third malicious party. For all these reasons we assume that the client is
not trusted. A general good practice is thus to perform strong input
validation, to inhibit dynamic SQL, and to use an effective password
management policy.

Network: an attacker with a direct access to the network can intercept
information or data flow between the client and web application or
between the web application and SQL Server. It is important to note that
this entry point is not only located on the external network, but it also
involves the internal enterprise network. The attacker can also mount
some complex attack like a man-in-the-middle attack. In order to protect
this entry point a good practice is the use of a secure channel (IPsec, SSL
etc.) between the different actors involved in the web application (client,
web server, SQL server etc.)

SQL Server port: an attacker can try to directly send requests and
malicious code (Slammer worm for example acted in this way) to the
SQL Server bypassing the web application. A strong access control
policy and ad-hoc firewall rules can mitigate the vulnerability of this
entry point.

SQL SERVER THREATS

As explained above, in order to identify the different threats on SQL

Server, we have adopted the STRIDE classification that groups the different
types of attack into six main classes (Spoofing identity, Tampering with
data, Repudiation, Information disclosure, Denial of service and Elevation of
privilege). Table 1 provides a mapping between the STRIDE classes and the
common attacks we have identified.

In the remainder of this section, we describe in more detail the different

types of attack and their respective countermeasures.
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Table 1 Mapping between the STRIDE classes and the common attacks
S T R 1 D E

SQL injection X X X
Unauthorized access X X X X
Network eavesdropping | X X X
Denial of service X

Timing analysis
Error analysis
Malicious Data Mining

el kel ke

6.1 SQL Injection

This is a technique which exploits vulnerabilities in input validation to
run arbitrary commands in the database [1]. It can occur when the
application uses input to construct dynamic SQL statements to access the
database. It can also occur if the code uses stored procedures that are passed
strings containing unfiltered user input. The issue is magnified if the
application uses an over-privileged account to connect to the database. In
this instance it is also possible to use the database server to run operating
system commands and potentially compromise other servers, in addition to
being able to retrieve, manipulate, and destroy data.

Usually this attack affects applications that incorporate non-validated
user input into database queries. Particularly susceptible is code that
constructs dynamic SQL statements with unfiltered user input.

6.1.1 Countermeasures

In order to prevent this kind of attack the application should validate its
input prior to sending a request to the database. Other preventive
countermeasures are the use of type safe SQL parameters for data access, the
execution of checks against parameter types and length, the use of injected
code as literal data instead of executable code for the database. The use of
restricted accounts can be useful too.

To discover if this type of attack has been performed, the only possible
countermeasure that can be adopted is logging all requests sent to the
database and then executing an off-line analysis. Because the logging and
analysis activities can be very expensive, when designing the database and
the database application it is important to identify which kind of data flow
must be logged and analyzed in order to avoid overloading the logging
system.
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6.2 Network Eavesdropping

This threat is related to the unauthorized interception of information sent
across a network [1]. This attack is usually carried out by means of a packet
sniffer program which can monitor the traffic on the network. An attacker
may exploit poorly configured network devices. Common vulnerabilities
include weak default installation settings of the communication channels
between client and web server and between web server and database server.

6.2.1 Countermeasure

There are different types of countermeasure that can be taken in order to
protect against this type of threat. For example the use of Windows
authentication to avoid sending credentials over the network can be useful to
protect the system from the discovery of authorized user accounts. In this
respect, the installation of a server certificate on the database server and the
use of an encrypted channel like SSL or [Psec is a good practice to protect
the integrity and confidentiality of the data exchanged on the network.

This type of attack assumes that a malicious user is able to capture the
traffic between the different actors of the web application. Usually, as
explained above such type of attacks is made possible by Sniffer tools. To
detect the use of these tools on the enterprise network, the use of some
“discovery sniffer” tools is suggested [4,5,6].

6.3 Error Analysis

This threat arises because of a general good practice concerning well
designed code [1]. Indeed in a well designed software system, when an error
occurs, a detailed error message is returned as feedback in order to
understand where the problem is. Exception conditions can arise because of
configuration errors, bugs in the code, or malicious input. Unfortunately, a
malicious client can use these error messages in order to guess sensitive
information about the location and nature of the data source in addition to
valuable connection details.

Targets of this type of attack can be applications that incorporate non-
validated user input into database queries and that do not use exception
handling or implement it poorly. Particularly susceptible is code that
constructs dynamic SQL statements with unfiltered user input or code that
does not check input parameters.
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6.3.1 Countermeasures

In order to avoid a malicious use of message errors, an approach is to
filter them. Effective filtering can be achieved by ensuring that the database
accepts connections only from the application (the application thus acts as a
filter), by using exception handling throughout the application's code base
and by returning a generic, harmless error messages to the client.

Log and traffic analysis is the only way for detecting this threat.

6.4 Denial of Service

Denial of service denies [1] legitimate users access to a server or
services. It can focus on two targets: the former type of DoS arises because
of the structure of the Internet. Therefore there are no effective
countermeasures at the database server level. The latter type of DoS is
performed to make the server unable to provide its services, by means like
application crashing or resource consumption. Stored procedures executing
non-optimized code, stored procedures executing code with weak controls
over variable size and type, or stored procedures executing code with a bad
resource allocation and management policy are examples of the possible
target of this attack class.

6.4.1 Countermeasures

To avoid the execution of this type of attack the following operations
should be considered. Strong input validation should be performed on the
client side with the aim of avoiding the insertion of malicious or unusual
requests.

Because most of the security holes with respect to the second class of
DoS attacks are usually located in the stored procedures, a good practice is
to allow the execution of only secure stored procedures. By secure stored
procedures we mean stored procedure whose implementation is well known.
Other suggested countermeasures include the adoption of a resource
allocation policy combined with a service monitor tool and the profiling of
the stored procedures also under stress conditions [7].

6.5 Unauthorized accesses
This threat is common to all systems in which there is no strong

password management policy. Attackers typically try to guess the passwords
of authorized users. This type of threat can also arise in all systems that are
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affected by buffer overflow vulnerability [8,9]. In this case once the attacker
has obtained a remote root shell, he/she has gained access to the database.

6.5.1 Countermeasures

The best strategies for protecting against unauthorized accesses are the
use of Windows authentication, the adoption of a strong password policy and
a strong input validation to avoid the insertion of buffer overflow code. The
only way to detect this type of threat is a log analysis.

6.6 Sensitive Information Disclosure

This threat can be posed even by users having limited access rights to the
database. By manipulating the results of regular queries by means of data
mining techniques an attacker can extract sensitive information.

6.6.1 Countermeasures

The only countermeasure to this threat can be database sanitization [10]
or the publication of a partial database containing only non-sensitive
information.

7. DESIGN GUIDELINES

We now summarize the major design guidelines that we have devised.

A first important protection measure is to adopt an architecture for
protecting the SQL Server from exploit attempts and at the same time
protecting the enterprise subnets from attacks performed using an eventually
exploited SQL Server. A logical separation between the network hosting the
SQL Server and the other networks is strongly recommended and also the
presence of a mirror SQL Server is a good practice in order to guarantee the
survivability of the system.

A second protection measure is the use of the Windows authentication
whenever possible. With Windows authentication, it is possible to make use
of the system account and password management policies, so there is no
need to store database connection strings with embedded credentials and to
have to transmit these credentials across the network. Windows and SQL
Server must both recognize the account from which the application runs. The
account must be granted a login to SQL Server and the login needs to have
associated permissions to access a database.
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If SQL authentication must be adopted, it is necessary to take additional
precautions in order to secure the database connection string, since it
contains the user login and password. The connection string must not be sent
over the network in clear text, but it must be encrypted.

The application login to the database must be properly authorized and
restricted. The application should use a least privileged account that has
limited permissions in the database; this can limit the potential damage if the
account is compromised or malicious code is injected.

A third relevant protection measure is to never connect to an SQL Server
using the sa account or any account that is a member of the SQL Server
sysadmin or db_owner roles. If the connection is established using an over-
privileged account, for example an account provided with the SQL Server
sysadmin role, the attacker can perform any operation in any database on the
server.

Other important protection measures are based on the use of
parameterized stored procedures that should be used for data access where
possible. Stored procedures can enhance data access security in several
ways. Database users can be given permissions to execute a stored procedure
without being granted permissions to directly access the database objects on
which the stored procedure operates. Besides, stored procedures can validate
user input, and their parameters cannot be treated as executable code. All
this helps mitigate the risk posed by SQL injection attacks. However, only
stored procedures whose origin and behavior is well known should be used.

If parameterized stored procedures cannot be used for some reason and
the application needs to construct SQL statements dynamically, it is crucial
to use typed parameters and parameter placeholders to ensure that input data
are checked with respect to their length and type.

Another protection technique is related to error management by the
application software. It is important to trap all the exceptions the application
may raise and return only generic error messages which do not reveal details
about the inner database structure.

Finally sensitive data should be encrypted when stored in the database
and protected, when being transmitted across the network, by using an SSL
connection between the Web server and database server and/or an IPSec
encrypted channel.
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Abstract: This paper analyses the security threats that can arise against an Active
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1. INTRODUCTION

Active Directory (AD) is Microsoft’s LDAP product offering, first
introduced with Windows 2000 servers. Whilst being reasonably conformant
to many of the LDAP set of standards e.g. [1,2,3], nevertheless it is non-
conformant in some aspects. For example, it does not support some
standardized features, such as multi-valued relative distinguished names
(RDNs) or country based naming, but it does support many proprietary
features, such as a tight coupling with the operating system and Microsoft’s
DNS server. It has also replaced several standardized features with its own
proprietary ones. For these reasons customers using Microsoft’s operating
systems are well advised not to try to replace Active Directory with an
alternative more standards’ conformant LDAP product such as OpenL.DAP.

Active Directory is a core service holding user and server account details
and security information. For example, Windows authentication uses
credentials stored in the Active Directory. Active Directory is therefore
fundamental to the correct operation of a Microsoft domain. For this reason
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most Microsoft based Web applications will need to access Active Directory
either directly or indirectly at some point during their business processing,
often during the authentication and/or authorization phases, but also at
different stages of the business process.

Access to Active Directory therefore needs to be well controlled and
protected, otherwise an attacker could severely impair the correct
functioning of both the Web application and the back office by successfully
launching an attack on Active Directory. Web application builders need to
understand the vulnerabilities of Active Directory and the threats that can
potentially exploit these vulnerabilities. In common with the other papers in
this series [4, 5, 6, 7] we use the STRIDE approach [8] to categorize the
most frequent or damaging threats that can arise against Active Directory
when deployed as part of the generic model for Web applications described
in [9]. Finally we describe the countermeasures that can be used to prevent
these threats or to mitigate against the damages subsequent to a successful
attack.

2. ASSUMPTIONS

The guidelines discussed in this paper will be effective only if the Active
Directory is properly installed, configured and patched with the latest
updates and service packs as released by Microsoft.

Correct configuration requires that that the Access Control Lists (ACLs),
that are used to control access to objects in the Active Directory, are set up
to give minimum privileges to the users (and to the Application Server
acting as a user or a proxy for the users).

The assumption is that the Application Server will communicate with the
Active Directory server by RPC messages generated by the Active Directory
Service Interfaces (ADSI), using one of the various scripting or
programming languages that it supports e.g. C++, Visual Basic or Java.

It is assumed that there is only a limited amount of trust between the
Active Directory Server and the Application Server, and between the
Application Server and the Web Server. By this, we mean that the Active
Directory Server will not let the Application Server have unrestricted access
to its resources, but will impose some controls on what the Application
Server can do. For example, the AD server may have an administrative limit
on the number of LDAP entries that can be returned to any ADSI request;
the AD server may have controls on the complexity and number of filter
items that can be included in a Search filter; and the AD server will have
properly configured access controls that limit which directory entries and
which operations the Application Server (and its users) are allowed to
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access. Likewise, the Application Server will have some controls on the
messages originating from the Web Server and will validate and restrict their
contents. From a security perspective, the less trust that there is between the
AD server and the Application Server, and between the latter and the Web
Server, the better, as more controls will be imposed by the AD server on
what the Application Server is allowed to do, and by the Application Server
on what the Web Server can do. For example, at one extreme the AD server
may forbid any modification operations to originate from the Application
Server. The more trust that there is, the more careful the application
developer will need to be to ensure that this trust is not abused by an
application server that may become compromised, or that is just badly
programmed.

The final assumption is that there is no (or very little) trust between the
Web Server and the client, or between the Web Server and the network over
which the client’s http messages are transported. Thus eavesdropping of
messages on the network is possible, and in extreme cases, message
modifications. Furthermore, the Web Server must expect the client to try to
circumvent whatever client controls are placed on the messages that it sends.
Consequently the Web Server and all subsequent servers that receive client
messages, for example SOAP messages that are relayed through the Web
Server, must be designed to protect against threats emanating from modified
or badly formed client messages, by rigorously validating their contents.

3. SECURITY REQUIREMENTS

We can look at security requirements from two perspectives: the security
requirements placed on the design of the web application because it has little
or no trust in the client and the external network, and the security
requirements placed on the Active Directory because it only has limited trust
in the web application.

The security requirements placed on the web application i.e. the web
server and the Application Server, partially depend upon the type of
application that is being built. At one extreme, we may have an application
that is only retrieving public information from the AD server. At the other
extreme we may have an application that is accessing highly confidential
directory information and writing to the AD server by adding, modifying and
deleting objects in the Directory Information Tree (DIT).

In the former case the web application may have very few security
requirements placed on it, and may allow unauthenticated user access over
unsecured http links. Example applications might be: one that accesses the
contact information of people in the marketing and sales department, or one
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that retrieves certificate revocation lists (CRLs) for a PKI application. The
main security function of the web application will be to validate the contents
of the client requests (see below) and ensure that only a predefined limited
set of Search requests, and no modification requests, are sent to the Active
Directory.

In the latter case the web application will have very strict security
requirements placed on it. An example application might be one that
supports single sign on (SSO) and user authorisation by checking user
credentials in and retrieving their privileges from the AD server, whilst
simultaneously supporting dynamic provisioning and management of user
rights. In such cases, the web application will demand strong authentication
of the user to prevent masquerade, and will require all messages to be carried
across encrypted links to protect against eavesdropping and message
modification. The web application should never request nor accept user
passwords passed in the clear from the client. This will facilitate password
capture over an insecure network. The application should always require
passwords to be sent over an encrypted link e.g. using SSL or IPsec, or use
HMAC hashing which creates one-time passwords. When using SSL, the
web server should check that the SSL cipher suite that has been negotiated
with the client is a minimum of 128 bit encryption, and that it has not been
negotiated down to plain text (no encryption) or weak encryption. The same
holds true for the Application Server if it is using an insecure link to
communicate with the Web Server. In addition rigorous checking and
validation of all client provided fields and requests should take place as
described next.

Preferably, and whenever possible, limit the choices that are available to
the client by having picking lists of predefined values so that the client
cannot create its own values (this is very important for attribute type names,
matching rules, the distinguished names of subtree roots, the name of the AD
server and its connection details, although the latter of these will usually be
pre-configured into the Application Server and the client will not have any
control over them). For fields where the client must usually have complete
freedom of choice over the input values, for example, attribute values for
Search filters, then the Application Server should perform rigorous
validation of these values. Firstly determine the maximum length of each
field and check that it has not been exceeded by the client. Reject client
operations in which fields are too long. Secondly, treat each field as a literal
and make sure that it is encoded as such, for example by enclosing the user’s
input in quotation marks. Consider the following: say that the client
interface had separate input fields for attribute types and values when
creating a Search filter. The code might put them together to create a filter
such as (<user type>=<user value>). An attacker might place the following
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in the Attribute Type field

&(objectCategory=person)(!salary>=10000) commonName
and the code would then create the following valid complex filter
(&(objectCategory=person)(!salary>=10000)(commonName=<user value>)

thereby allowing the attacker to create whatever Search filters they want
to. Input field validation and checking is thus extremely important.

Because the Active Directory only has limited trust in the web
application, the security requirements placed on the Active Directory and on
the design of the web application are common, regardless of the type of
application that is being built. Firstly the Active Directory should be
configured so that the Application Server has no (or very limited) access
privileges to data in the Active Directory. This will help to protect against
elevation of privileges, whereby a user gains the access privileges of the
application rather than his/her own. Secondly the Active Directory should
limit the types of request from and the volume of data returned to the
Application Server. Finally, the Application Server should Bind to the
Active Directory using the client’s user context rather than its own.

When an application Binds to an object in the Active Directory, the access
privileges that the application has to that object are based on the user context
specified during the Bind operation. For the ADSI binding functions and
methods (IADsOpenDSObject::OpenDSObject, ADsOpenObject,
ADsGetObject, GetObject) an application can implicitly use the credentials
of the caller, or explicitly specify the credentials of a user account, or use an
unauthenticated user context (Guest). The Application Server should never
Bind to the AD server using a stronger form of authentication than that used
by the client, nor should it use a user account that has higher privileges than
the client’s (for example, the LocalSystem account on a domain controller
has complete access to Active Directory whereas a typical user has only
limited access to some of the objects in the directory). Ideally, the
Application Server should either use the credentials provided by the user,
and validate them by passing them to the AD server either implicitly or
explicitly, or should discard the user credentials altogether and use the Guest
context. In the former case the Application Server is acting as a proxy for the
client and will thus only have the same access rights to the directory data as
if the client were binding directly. In the latter case, the Application Server
will only gain minimum/public access rights to the directory data. For
example, an application policy might say that local users who access the
Active Directory when they are at a remote site should only have Guest
access to public data in the directory, in which case their credentials would
be discarded by the Application Server when they contact it from a remote
location.
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4. ACTIVE DIRECTORY THREATS AND
COUNTERMEASURES

4.1 Spoofing

Spoofing can take one of two forms. Either an attacker attempts to spoof
a user or an attacker attempts to spoof the Active Directory. In the former
case the attacker captures or guesses a user’s credentials and then
masquerades as the user when accessing the Active Directory. In the latter
case the attacker tricks a client into believing that information came from the
Active Directory when it did not, or tricks the client into sending
confidential data to it that should have been sent to the Active Directory.
Spoofing results from vulnerabilities in the client or in the network.
Spoofing the directory could be achieved by social engineering (e.g. sending
a wrong URL to users), misdirecting operations or modifying data in transit.
The use of SSL links will counteract the latter two, and user education will
help to protect against social engineering, although this is notoriously
difficult to fully protect against.

Spoofing a user can be aided by vulnerabilities in the network,
vulnerabilities in the Active Directory Information Base and vulnerabilities
in the Application Server. An attacker can sniff the network to obtain user
account names and passwords, or access the Active Directory to retrieve
valid user account names and then find the password by either a dictionary
attack or modifying the password attribute in the directory. Since the Active
Directory is often designed to return user account names, it may be difficult
to stop attackers from gaining this information, but if clients generally don’t
need to know user account names, then these should not be returned to the
client interface. The use of encrypted connections such as SSL or IPsec will
stop network sniffing, as will the use of HMAC [10] or Kerberos
authentication. Dictionary attacks can be prevented by having the
Application Server count the number of failed login attempts per user
account name, writing them to audit trails, and then disabling the account
when a threshold number is exceeded. Modification of password attributes
can be prevented by the Application Server not providing a modification
capability to the client, but if this is essential, then the server should
carefully validate all modification operations and trap ones that try to modify
the password attribute.

4.2 Tampering

With this threat, an attacker tries to modify directory data either in transit
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to the client, or whilst it is stored in the AD server. This can be due to
vulnerabilities in the network, vulnerabilities in the Active Directory
Information Base or vulnerabilities in the Application Server. Threats to the
AD server can arise from masquerade, poorly configured access controls and
the injection of modification operations via the Application Server.
Countermeasures include protecting data in transit by using either SSL or
IPsec. Masquerade has been dealt with in Section 4.1. The Application
Server should be configured to reject all Modification operations, or if this is
not possible, to very carefully validate all user input fields and to reject
operations with “invalid” arguments. The Application Server should Bind to
the AD server using the user provided credentials so that the user does not
inherit the possibly higher privileges of the Application Server process.

4.3 Repudiation

Repudiation is when users deny that they have performed specific actions
or transactions. Keeping adequate audit trails will provide evidence of who
did what and will help to counteract this type of threat. Auditing should be
performed by both the AD server and the Application Server, and in this way
insider attacks directed straight to the AD server will be more easy to
identify. Requiring relatively strong client authentication will minimize the
chances that an attacker can perform actions on behalf of a client which will
subsequently be repudiated.

4.4 Information Disclosure

Information disclosure occurs when a user gains read access to
information that (s)he is not supposed to have access to. This can be due to
vulnerabilities in the network, vulnerabilities in the Active Directory or
vulnerabilities in the Application Server. Vulnerabilities in the AD software,
other than those caused by badly configured access controls, are outside the
scope of this document. An attacker may sniff the network, masquerade as
another user, or generate valid or invalid search or modify requests. Network
sniffing and masquerade have already been dealt with in section 4.1.
Generating invalid search or modify requests may return useful error
diagnostic messages, which can provide the attacker with valuable
information. The countermeasure to this is for the Application Server to
scrub useful information from error messages and to return bland generic
error messages to the client, whilst writing the full error message to its audit
trail.

The Application Server should exert control over the Search requests that
clients can perform. In general only specific limited Searches should be
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allowed by clients, otherwise attackers may generate very broad searches
that trawl the entire directory. All user input should be validated, and only a
fixed subset of ADSI arguments should to be allowed. Searches with
“invalid” arguments should be rejected. However, a determined attacker may
even circumvent this by generating multiple valid Search requests that only
return snippets of information each time. If this is done a sufficient number
of times, the sum total of information gained by the attacker may be more
than the application designers ever intended to be revealed. For example,
retrieving details of individual users in each Search request, may enable an
attacker to retrieve details of the entire organizational workforce. Such
attacks are very difficult to stop. Even building an audit trial and refusing
access after a set number of searches might not stop the problem if the
attacker has access to multiple user accounts.

Similarly, the Application Server should exert tight control over
Modification operations. Ideally, it should refuse to allow any Modification
operation through the interface, or if this is not possible, it should ensure that
only authenticated users can perform modification operations, whilst
simultaneously very carefully validating all user input fields and rejecting
those with “invalid” arguments. For example, an attacker may try to modify
the heuristic status of attributes, by setting bit 1 (which will make the
attribute visible to unauthenticated users) or unsetting bit 3 (which removes
operational attribute status).

4.5 Denial of Service

In a denial of service attack, the attacker denies access to the AD server
for normal users. This can be aided by vulnerabilities in the Active Directory
server and vulnerabilities in the Application Server. Denial of Service
attacks are typically very hard to protect against.

The attacker may try to crash the AD server, or more likely, consume
excessive resources. The easiest way to consume excessive resources is to
launch CPU or network intensive Search operations. The former can be
started by creating Searches with inefficient and/or complex filters, or ones
containing multiple ambiguous name resolution elements (i.e. those where
the attribute type is set to anr) [11]. Network intensive Searchers are
designed to return lots of entries — the entire AD contents if possible.

Countermeasures to the above are as follows. The Application Server
should validate all filters input by the user and only allow a predefined
subset of filters to get through. In addition, the AD server should be
configured to reject complex filters, and to only return a pre-defined
maximum number of entries for any Search request.

An attacker may try to open up multiple connections to the Application
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Server and/or AD server, preferably using SSL which consumes more
resources. Countermeasures include timing out inactive sessions, keeping a
record of the usernames of each active session and only allowing a fixed
number of sessions per user at any one time.

More sophisticated attacks, which would normally require administrator
level privileges, include: switching off indexing which kills the performance
of most search operations; starting replication between AD servers which
again kills performance; or updating the schema which might actually crash
the AD server. Careful validation of the allowed modification operations by
the Application Server should trap operations such as these.

4.6 Elevation of Privileges

Elevation of privileges can occur when an attacker either masquerades as
a user with higher privileges than his own, or modifies data in the directory,
for example, by adding a user to a group, or modifying ACLs in directory
objects. Masquerade has already been described in Section 4.1. Illegal
modification of directory data can be prohibited by disallowing any
Modification operation to originate from the Application Server, or if this is
not possible, by very carefully validating all user input fields and rejecting
operations with “invalid” arguments. Correctly configured Access Control
Lists in the AD server, and Binding with minimum privileges are also
essential.

S. CONCLUSIONS

Whilst many different vulnerabilities and threats exist, they can nearly all
be protected against by a few common countermeasures:

¢ Encrypt and authenticate messages that pass over insecure networks by
using either SSL or IPsec

e Always have the Application Server Bind to the Active Directory using
the same or lower privileges than those possessed by the client

e Ensure that the Access Control Lists in the AD server are correctly
configured to give minimum privileges to clients.

e Severely limit the number and scope of directory operations that the
Application Server sends to the AD server on behalf of the client. Always
try to restrict the range of parameters that can be set or chosen by the
client, and validate all user input fields for their content. If possible,
ensure that no Modification operations are ever sent.

e Restrict the error diagnostic messages that are returned to the client.
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With these countermeasures in place, it will significantly reduce the risk
that an attacker will be able to launch a successful STRIDE attack against an
Active Directory server.
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Abstract: In the last couple of years, several European countries have started projects
which intend to provide their citizens with electronic identity cards, driven by
the European Directive on Electronic Signatures. One can expect that within a
few years, these smart cards will be used in a wide variety of applications. In
this paper, we describe the common threats that can be identified when using
security tokens such as smart cards in web applications. We illustrate each of
these threats with a few attack scenarios. This paper is part of a series of
papers, written by several academic teams. Each paper focuses on one
particular technological building block for web applications.
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1. INTRODUCTION

This paper analyzes threats that occur when smart cards are used in web
applications. This analysis is part of the Designing Secure Applications
(DeSecA) project [5], funded by Microsoft. The aim of this project is to
provide an application developer with a tool that allows him to prevent the
exploitation of a broad range of threats. Several academic teams investigated
common threats in five areas, each focusing on one particular technological
building block for web applications [1,2,3,4]. One of these is the smart card,
and in particular the electronic identity card (elD card). Many European
countries have started to develop such smart card projects, driven by the
European Directive on Electronic Signatures [11]. We expect that these
projects will be very successful in several European countries in the short
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term and in most European countries within a couple of years from now.
This means that it is important to identify common threats before large scale
software applications are developed and used. These threats involve the use
of smart cards where the application developer’s decisions can make the
difference: well known attacks on smart cards (e.g. timing attacks, power
analysis and fault attacks [8,9,10]), are not included in the scope of this
study. In the following sections, we give an overview of the targeted security
tokens, a list of attack entry points and the most relevant mitigation
techniques. We conclude with an enumeration of threats with potential
countermeasures.

2. SECURITY TOKENS

Our threat modeling for security tokens mainly focuses on electronic
identity (elD) cards and smart cards used for digital signatures.
An elD card is mainly used to

e Obtain strong authentication of the cardholder, e.g. through client
authentication when using a website secured with SSL. This client
authentication is accomplished by having the client sign data, which is
specified by the challenge-response protocol of SSL. The digital
signature is computed by the cardholder’s security token, e.g. a smart
card, securlD token or a software key store. The token only produces the
digital signature after some form of cardholder verification, e.g. using a
personal identification number (PIN) or a password. Once the client has
successfully been authenticated, specific services may be available to the
client (cf. authorization).

e Generate advanced electronic signatures. These signatures, in
combination with a qualified certificate, are equivalent to hand-written
signatures (cf. [11]). The production of an advanced electronic signature
also relies on the cardholder verification through PIN or password
validation. Note that the generation and verification of advanced
electronic signatures is a very complicated matter (more legally than
technically).

e Obtain information on the cardholder (e.g. address, social security
number, date of birth, gender). It is common to acquire this type of
information without any cardholder verification.

¢ Decrypt confidential data which is intended for the cardholder only.

Figure 1 gives an overview of the different entities which are active in a web

application scenario that uses strong client authentication. The smart card

may contain user data (e.g., e-business card, home address, birth
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information, picture), secret information (private keys to sign or decrypt
information) and reference data (e.g. a genuine copy of the root certificate of
the cardholder’s certification authority). The smart card is inserted into a
smart card reader which is connected to the user’s PC. The smart card
communicates with an application on the user’s PC through the smart card
reader, and the user authenticates himself to his smart card using a PIN or
password, depending on the web server’s requirements. This PIN or
password can be entered on the smart card reader, on the keyboard of the
user’s PC, or it may have been cached on the user’s PC for convenience
reasons.
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Reference data: e.g.,
root centificate

‘User data: ¢.g., e-business card,
social security number
Secretdatar e, privatekey | BEESRIGEEREREN b b L
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Figure 1. Overview of the entities in a web-based application using smart cards.

3. DESCRIPTION OF THE ATTACK ENTRY
POINTS

The overview of the entities involved when using smart cards in a web
application, shown in Fig. 1, points out the different attack entry points:
every entity and every connection between the entities can be hijacked. It is
therefore very important to use and carefully configure every entity to
prevent these attacks.

In the following, we list the different attack entry points. Note that we do
not mention the Crypto API, as such an API is typically available on any
user machine.
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3.1 The smart card itself

An obvious point of attack is the smart card itself, as it contains private or
secret cryptographic keys. Different keys may be stored in the smart card,
depending on the required security level of the application:

1. A smart card used for data authentication usually contains secret long-
term master keys (which are commonly used to compute session keys)
or private signing keys. The signing key used to produce advanced
electronic signatures should ideally be generated in the smart card; it
should not be possible for the signing key to leave the smart card.
Before performing a private key operation, the presence of the
cardholder must be verified by means of a PIN or password.

2. A smart card used for user authentication usually contains one or more
signing keys or one or more secret long-term master keys.

3. A smart card used to protect the confidentiality of data contains
decryption keys. As with signing keys, all usage of these keys must be
protected by a cardholder verification using a PIN presentation. It is
clear that a backup copy of these keys should be available to restore
encrypted data if the smart card should be lost or damaged.

3.2 The smart card reader

This device should behave as expected and should forward the
information exchanged between the PC and the smart card. If it is possible to
upgrade the firmware of the smart card reader, this upgrade should not
compromise the correct behavior of the reader.

33 The smart card driver software

The smart card API, which is used to address the smart card, is essential
for the system to operate as specified. The introduction of a Trojan horse or a
modified version of this driver software may enable an attacker to gain
unauthorized access to the computer system and the smart card.

34 The application

The application using the Crypto API or the smart card API performs
PIN management. This may be a vulnerable point. The PIN and/or
passwords database should never hold PINs or passwords that may
compromise the trustworthiness of advanced electronic signatures.
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3.5 The user

It is clear that the cardholder also may be an attack entry point: the
security of a system in which smart cards are used depends on (a) the
possession of the smart card, (b) the knowledge of the appropriate PIN or
password to activate some of the card’s functions, and (c) the cardholder’s
approval of the secret or private key operation, which gives us three attack
entry points. Also, the visualization of the signature/decryption request can
be a point of attack.

3.6 Web servers

A web server usually delegates the validation of the authentication
information of a client to an authentication server. This authentication server
typically relies on a hardware security module to validate this information.
Strong client authentication can only be achieved by consulting up-to-date
certificate status information. A possible attack would be to prevent and/or
to spoof the gathering of these data.

4. MITIGATION TECHNIQUES AND
RECOMMENDATIONS

The mitigation techniques to alleviate security threats can be divided into
two sub categories: technical and procedural solutions. Technical solutions
can be implemented on all the different components of the system: the smart
card, the smart card reader, software components on the user’s PC and the
web server.

4.1 Technical solutions for the security token

* An adequate access control mechanism should protect the token (smart
card, hardware security module, key store...). The software designer
should, if possible,

o Limit the number of password/PIN trials.
o Specify a fixed number of operations which can be performed without
requiring a new or additional user authentication.

* Security tokens which allow the recovery of (secret) data should be
avoided: it should not be possible to recover data which the user has
invalidated.

e The user of a security token should have the possibility to specify for
each security-critical service offered by his security token an individual
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PIN or password: if a single PIN or password is used to activate the
generation of an advanced electronic or authentication signature, the
decryption of encrypted data, the retrieval of privacy-sensitive
information, updating privacy-sensitive information, etc, then the user
has no control on the actual operations that are launched to the security
token.

The data stored in a security token should be time stamped to avoid
replay or substitution.

The integrity of the data stored in a security token should be protected so
that unauthorized modifications can easily be detected.

Confidential data should not be stored in the clear.

One should only use security tokens which support and implement state
of the art cryptographic algorithms. '

4.2 Technical solutions for the smart card reader

A smart card reader with a secure PIN pad and a secure display should be
used to guarantee that the information showed to the user is genuine. The
secure PIN pad reader should ideally only display information which
comes from the smart card, i.e., which is sent through a secure channel
between the smart card and the smart card reader.

The firmware of the smart card reader should require some kind of user
authentication so that a malicious firmware update cannot take place
without being noticed.

4.3 Technical solutions for the user’s PC

PINs and passwords which give access to the security token’s
functionality should never be stored persistently (e.g., cache, swap file,
post-it), and should always be obfuscated when used in volatile memory.
The software designer should inform the user of the reason why a PIN is
requested (e.g., user authentication), which type of operation requires this
PIN or password (sign, decrypt, read or write sensitive data...), and in
which type of session this occurs (e.g., decryption session, authentication
session ...).

The most recent accesses and usages of the token should be logged, and
the integrity of this log should be protected.

The PC application or web server should set up a secure communications
channel with the security token to avoid attacks which involve a
malicious smart card reader.
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e The access conditions to services of the security token should be
specified as restrictive as reasonable, e.g., so that only the functionality
which is strictly necessary can be used.

e The integrity of all the relevant software (e.g., client applications, driver
software...) should be protected, e.g., using code signing techniques
which can easily be validated.

* One should not rely on garbage collector techniques to erase or clear
sensitive information (cryptographic keys, user data, PINs, passwords...).
This data should explicitly be reset by the software designer and
developer.

4.4 Technical solutions for the web server

o All security-critical information of a web server should be stored in
trustworthy hardware such as a hardware security module.

4.5 Procedural techniques

e The targeted audience should be trained to become (more) security-
aware. Users who deal with security tokens must be informed such that
they know how to correctly use their security tokens and how to spot
potential attacks or preparations for such attacks. The users should be
informed: of how to protect their security tokens both logically and
physically to avoid them from being stolen, lost or damaged; and that
their PINs and passwords must be kept secret and only used in the correct
context.

e All procedural mitigation techniques should be clearly described and
documented in easy to understand terms.

o The procedures which specify how the user should effectively protect his
machine (including operating system and applications) should also
specify guidelines to avoid malicious software, e.g., using a virus scanner
and a personal firewall.

Note that legitimate users can also be potential attackers. It is therefore
very important not to forget the impact of the threats triggered by insiders as
they can easily study the (in)security of a given system, even without raising
any suspicion, use the system legitimately and subsequently mount an attack
on its vulnerabilities.
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5. LIST OF THREATS

In this section, we give an overview of threats that are relevant to the use
of smart cards in (web) applications. For each threat, we describe some
scenarios that lead to the successful exploitation of the threat. We also
propose some countermeasures, specific to the use of smart cards. General
countermeasures, such as the installation of virus scanners, are mentioned in
the previous section and are not repeated here. A much more detailed
description of the threats can be found in [5].

5.1 List of threats
5.1.1 Token is no longer in the possession of the genuine holder.

If a token is no longer in the possession of the genuine holder, it is not
easy to determine whether an attacker has obtained the token, or whether the
token will remain inactive forever. This type of threat can be seen as a denial
of service attack as the legitimate user can no longer use the token’s
services. An attacker may also prevent the user from using the services of
the token, in order to make the token available to him/herself.

In order to avoid potential abuse of a token which is lost or damaged, the
security services of that token should be revoked as soon as the legitimate
user discovers the unavailability of the security token.

5.1.2 Token is damaged or unusable

If a security token is damaged, it may no longer operate correctly. This
may render the key material and other sensitive data in the token unusable,
both for the genuine token holder and a potential attacker, e.g., due to a
hardware fault or an attacker’s intervention. This type of threat is a denial of
service attack as the legitimate user can no longer rely on the token’s
services.

Any physical damage of a security token can be detected easily. If this
event occurs, the token must be revoked to avoid potential abuse of this
hardware failure.

5.1.3 Secret data extraction from the token
The attacker obtains the secret data stored in a token. This leads to the

existence of cloned tokens. The attacker can use this new token to
impersonate the genuine user of that token. This attack is very hard to
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counter if the token user has not been properly trained to discover abnormal
behaviour while (s)he is using his/her token.

The application designer should pay special attention to the handling of
sensitive (user) data, and should never manipulate them in unobfuscated
form to avoid the extraction of secret information on this data, even if the
memory is dumped to disk.

5.1.4 Bypassing the access control mechanisms of the security token

The attacker may obtain a copy of the (software) security token, or obtain
the PIN or password which gives access to the services of the security token,
e.g., by observation of the PIN while the genuine user uses the token, or by
social engineering. Once the attacker has access to the functionality of the
token, (s)he can impersonate its legitimate user whenever the user uses the
token in an environment controlied by the attacker.

This attack is very hard to counter as the attacker may be very well
prepared, and the user may discover the abuse of his token much later than
the moment of the attack.

5.1.5 Remote private/secret key operations

An attacker may set up a scenario in which he can perform operations
which use the cryptographic keys of the legitimate user’s security token, e.g.,
to generate authentication or advanced electronic signatures, or to decrypt
encrypted data, without the consent of the legitimate token owner. The
attacker may gain this access through social engineering or after a successful
Trojan Horse attack which can either reveal the legitimate user’s PIN or
password, or which immediately executes additional operations which were
not authorized by the legitimate token user.

This type of attack is very hard to counter and requires careful training of
the token users. An additional countermeasure consists of the limitation of
the number of operations that a security token can execute before a new user
authentication is necessary.

5.1.6 Tampering with data in the token

An attacker may be able to alter the data stored in a security token, e.g.,
through the update, insertion, invalidation or removal of data without the
user’s explicit approval. E.g., if the token contains a root certificate of a
certification authority that the token holder blindly trusts, the attacker can
add an additional root certificate of a malicious party during the same
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session which was authorized by the user. By doing this, the malicious party
abuses the authorization by the legitimate token user.

6. CONCLUSION

This article focuses on the countermeasures and recommendations, which
a software developer of web applications in which security tokens are used
for client and/or server authentication should keep in mind in order to
counter common threats. We have described the most important threats,
proposed reasonably possible attack scenarios to exploit them, and
recommended countermeasures. We conclude that the awareness of the user
is the most vulnerable link in the security chain which builds secure (web)
applications which rely on user tokens. It is clear that the need for proper
user education and training cannot be over-emphasized enough. This should
not come as a surprise, as the entire purpose of using security tokens such as
smart cards is actually moving the trust (and hence the target of an attack) to
the user. The application developer can play a crucial role in the user
awareness process. Another important element is the user’s computer
system: if this gets compromised in one way or another, the entire system’s
security guarantees are at risk.
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Abstract The Common Scrambling Algorithm (CSA) is used to encrypt streams
of video data in the Digital Video Broadcasting (DVB) system. The
algorithm cascades a stream and a block cipher, apparently for a larger
security margin. In this paper we set out to analyze the block cipher and
the stream cipher separately and give an overview of how they interact
with each other. We present a practical attack on the stream cipher.
Research on the block cipher so far indicates it to be resistant against
linear and algebraic cryptanalysis as well as simple slide attacks.

Keywords: Block cipher, stream cipher, cryptanalysis, DVB, pay-tv

1. Introduction

The DVB Common Scrambling Algorithm is an ETSI-specified algo-
rithm for securing MPEG-2 transport streams such as those used for
digitally transmitted Pay-TV. It was adopted by the DVB consortium
in May 1994, the exact origin and date of the design is unclear. Until
2002, the algorithm was only available under a Non-Disclosure Agree-
ment from an ETSI custodian. This NDA disallowed and still disallows
licensees to implement the algorithm in software for “security reasons”.
The little information that was then available to the public is contained
in an ETSI Technical Report [European Telecommunications Standards
Institute, 1996] and patent applications [Bewick, 1998], [Watts et al.,
1998]. This changed in the Fall of 2002, when a Windows program
called FreeDec appeared which implemented the CSA in software. It
was quickly reverse-engineered and details were disseminated on a web
site [Pseudonymous authors, 2003].

For keying the CSA, so called control words are used. These control
words are provided by a conditional access mechanism, which gener-
ates them from encrypted control messages embedded in the transport
stream. Conditional access mechanisms vary between broadcasters and
can be more easily changed than the actual scrambling algorithm. Ex-
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amples for commonly used conditional access mechanisms are Irdeto,
Betacrypt, Nagravision, CryptoWorks etc. A new common key is usu-
ally issued every 10-120 seconds. The great relevance of CSA lies in the
fact that every encrypted digital Pay-TV transmission in Europe is se-
cured using this algorithm. A practical break of CSA would thus affect
all broadcasters and could not be remedied by changing the conditional
access mechanism.

The scrambling algorithm can be seen as the layering of two cryp-
tographic primitives: a 64-bit block cipher and a stream cipher. Both
ciphers employ a common key; the stream cipher uses an additional
64-bit nonce, the origin of which we will discuss later.

In this paper we investigate the two ciphers independently and show
weaknesses. Although we do not present a break of the scrambling al-
gorithm we present a known-plaintext attack on the stream cipher and
show preliminary results on the block cipher.

The rest of this paper is organized as follows: Section 2 defines the
notation used. In Section 3 we describe the two ciphers and how they
are combined in the CSA. Our attack on the stream cipher as well
as a presentation of properties of the block cipher follow in Sections 4
respectively 5. Section 6 concludes.

2. Definitions

In the rest of this paper we use the following notation:

K the common key. A 64 bit key used for both the stream and the
block cipher

ki denotes the 7-th bit of K

KE  denotes the expanded key which is derived through the key schedule
of the block cipher

SB; is the ¢-th 8-byte block of the scrambled data stream
S By is used as nonce in the stream cipher

CB; is the i-th 8-byte block of stream cipher output

IB;  intermediate blocks. See Figure 3.1 for details.

DB; is the ¢-th 8-byte block of descrambled data

R denotes the residue and
SR is used for the scrambled residue
v an initialization vector. Always equals the zero block.

rol bitwise rotation to the left by one bit
Il denotes concatenation

t; state of the stream cipher after ¢ clocks

t_3;1 is the starting state, to the state after the initialization
I4 is an additional input for the stream cipher generated from the nonce
lw denotes the cycle length, i.e. the smallest number j — ¢ for which t; = ¢;
ls is the length of a small cycle, i.e. the smallest number j — i for which

the feedback shift register 1 has the same value in ¢; and t;
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Figure 1. Combination of block- and stream cipher.

3. Description
3.1 Cascading the Block and the Stream Cipher

The scrambling algorithm can be seen as a cascade of a block cipher
and a stream cipher. Both ciphers use the same 64-bit key K, which
is called the common key. We will now describe how the block and
the stream cipher are combined. Figure 3.1 depicts the descrambling
process.

For scrambling the payload of an m-byte packet, it is divided into
blocks (D B;) of 8 bytes each. If an adaption field was used, it is possible
that the length of the packet is not a multiple of 8 bytes. Thus the last
block is n < 8 bytes long and shall be called residue.

The sequence of 8-byte blocks is encrypted in reverse order with the
block cipher in CBC mode, whereas the residue is left untouched. The
last output of the chain IBj is then used as a nonce for the stream
cipher. The first m bytes of keystream generated by the stream cipher
are XORed to the encrypted blocks (IB;);>1 followed by the residue.

3.2 The Stream Cipher

3.2.1 Overview. The stream cipher is built of two feedback-
shift-registers and a combiner with memory. The overall layout is shown
in Figure 3.2.1. The registers p, ¢ and ¢ are bit registers. All other
registers are 4 bit wide.

The stream cipher operates in one of two modes. The first one is the
initialization mode in which the starting state of the cipher is set up.
The second one is the generating mode in which the cipher produces two
pseudo-random bits per clock cycle.
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Figure 2. The stream cipher.

3.2.2 Key Schedule. The cipher uses the common key K and
the first scrambled block of the transport stream SBg as a nonce to
set up the initial state. At first all registers of the cipher are set to 0.
Then the common key K = ko, ..., ke3 is loaded into the shift registers
A:=agj,...,a9; and B := byj,...,bg; with 0 < j < 3 according to
the following rule:

{ }C4.i+j 1 <7

Gij = 0 else
b — ksoyasy; <7
A 0 else
In the following a; and b; denote the 20 4-bit registers a;,...,a:3 and
b0, - - ., b 3 respectively.

Hereafter the cipher is in initialization mode. It uses SBj and the
feedback register D as input and performs 32 clock cycles to calculate
the starting state. The inputs for feedback shift registers 1 and 2 are
derived from SBy:

(4, 17) = (SBy div 2%, SBy mod 24) in state 5,4 € {-31,-29,...}
o (SBy mod 24, SB; div 24) else

Thus in every odd cycle number I4 is the high nibble of SBy whereas
I8 is the low nibble. In even cycles the nibbles are used the other way
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round. See below for the equations which update the internal cipher
state.

3.2.3 Generation Mode.

Feedback shift register 1.  The feedback af, of shift register A is
calculated as

P ag ® X if not in init mode
W = e XeD@IA else

The next value A’ for register A is then given by

A" = (ag,ag,...,a8)

Feedback shift register 2.  The feedback b of shift register B is
given by

T be Dby DY if not in init mode
o be Dby Y OIP else

and the new value B’ for B is

B = (bé)?bov--'ab8> p=0
(rol(by),bo,...,bs) else

Other registers.  New values for the other registers, namely X, Y,
Z, p and ¢ are derived from seven 5 X 2 S-Boxes. Table 1 shows which
bits from shift-register A are used as input for the S-Boxes and how the
new register values are constructed. The S-Boxes itself are shown in
Table 4. Table 6 gives an algebraic description of the S-Boxes, with a
being the most significant input bit and e the least significant.

Combiner. The stream cipher uses a combiner with memory to
calculate two bits of output per clock. The memory of the combiner
consists of registers F, F and c¢. In each cycle a new state for these
registers is determined according to

"o (F7E> g=0
(B, F) = {(F,E+Z~I—cmod24) else

c is unchanged if ¢ = 0. Otherwise it is 1 if £+ Z 4+ ¢ > 2% and 0 else.

The output of the generator is calculated by Do @ D3||Do @ D1 where
D := E® Z ® B°* with B°“ given by

Bg“t .= ba,o ® bs,1 @ be,2 @ bs,s
Bg¥t .= bs,0 ® br,1 ® bas D bs,o
Bt = bas ®bro®bso®bs
Bg"™ :=bg o @ bs3 D b1 O bro
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3.3 The Block Cipher

CSA employs an iterated block cipher that operates bytewise on 64-
bit blocks of data and uses a 64-bit key, the common key K. Each round
of the cipher employs the same round transformation ¢, which takes an
8-byte vector along with a single byte of the expanded key as input
and outputs an 8-byte vector. This round transformation is applied 56
times. One could also lump together 8 successive rounds of the cipher
into a round function ¢’ and describe a 7-round cipher which uses 64-
bit subkeys; however we feel that the description we give below is more
natural and easier to comprehend.

3.3.1 The Key Schedule. Let p be the bit permutation on
64-bit strings which is defined in Table 2. The expanded key K¥ =
(kE,... kL) consists of a total of 448 bits which are recursively com-
puted as follows:

5 —
ko,,,,’53 = k[),“.,63

kégi, . saives = PRgaa 1y, oai1)  0%0i0i0i0i060i0i0i 1<i<6

adecimal constant. We note that the key schedule is entirely GF(2)-
linear.

3.3.2 The Round Function. At the core of the round trans-
formation ¢ are the nonlinear functions f and f’. These are distinct

Table 1. S-Box input and generation of new register values.

S1 | aso | a0z | as;1 | as3 | aso
So | a1 | a2 | as3 | aso | asa
S:z a9,3 ai,0 Q4,1 Q4,3 as,2
Sy | azz | aoa | a13 | asz2 | arp
Ss | as2 | as2 | aso | a7y | asz2
Se | @21 | az1 | a40 | as2 | as3
S7 | a2 | azpo | as1 | ar2 | ar3

Ss,0 | Sz0 | S21 | S1a
S0 | S50 | Sa1 | Ssn
S20 | Si,0 { Se,1 | Ss1
S73
S7.0

o o[ ] | e

Table 2. Key bit permutation.

7 o112 {345 |6 |7 |8 ]9 |[10]11[12]13 |14 |15
p(i) (17 (35 [ 8 | 6 [41 [48 [28 [20 (27 |53 |61 |49 | 18 |32 | 58 | 63
% 16 117 |18 |19 {20 |21 [ 22 123 {24 |25 (26 |27 [28 |29 |30 |31
p(3) 123119136 (38| 1 [52 (26| 0 |33 |3 |12|13 |56 (39 |25 (40
i 32 133 1343536 |37 |38 |39 |40 |41 |42 {43 {44 |45 |46 |47
p(i) |50 [ 34 [51 |11 [21 (47 [29 [57 |44 [30 | 7 [24 |22 |46 |60 | 16

[ 48 |49 |50 | 51 |52 |53 {54 |55 |56 | 57 | 58 | 59 | 60 | 61 | 62 | 63
p(t) |59 | 4 |55 (42 (10| 5 | 9 (43 |31 |62 |45 |14 | 2 |37 |15 | 54
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permutations on the set of all byte values and can be seen as the S-
Boxes of the cipher. Both permutations have maximum cycle length
and are related to each other by a bit permutation o, i.e. f/ = oo f.
This bit permutation maps bit 0 to 1, bit 1 to 7, bit 2 to 5, bit 3 to 4,
bit 4 to 2, bit 5 to 6, bit 6 to 0 and bit 7 to 3. See Table 5 for the actual
values described by f.

Let S = (so,...,87) be the vector of bytes representing the internal
state of the block cipher in an arbitrary round. The function ¢ taking
the internal state S from round ¢ to round % + 1 can then be defined as

&(s05...,87,k) = (1,52 D 50,53 D S0, 54 D S0,
s5,56 D f'(k @ s7), 87,80 ® f(k ® 57))

whereas for decrypting a block of ciphertext we need the inverse function:

¢ soy... 871, k) = (51D f(s6 D k), so,
sT®s1® f(se D k), s7Bs2® f(se B k),
s7® 83D fs6 D k), 84,55 D f'(s6 B k), s6)

3.3.3 Encryption/Decryption.  Encrypting a plaintext P =
(po, - - ., p7) is accomplished by

S0 = p
ST = $(S"H kL, .. KELD) 1<r<56
c = 5%

which yields the ciphertext C' = (cy, ..., ¢7). For decrypting this cipher-
text the following sequence of operations needs to be carried out:

s = cC
STo= ¢(Sr_17(k£18—8r7'"’kaS—ST)) 1<r<56
p = 5%

4. Analysis of the Stream Cipher

In the following we denote with to the stream cipher’s state after the
initialization. That means t_3z; is the initial state, in which the common
key is loaded in the registers A and B respectively. Given this notation
we define a full cycle to be the smallest number [, := j — ¢ for which
the values of all registers in state t; are equal to the values in ¢;. Also
we define a small cycle to be the smallest number Iy := 7 — 7 when the
values of X and A in state t; are equal to the values in ¢;.

4.1 Observation

The CSA stream cipher’s state consists of 103 bits. This means that
the maximum period length is 219, For cryptographic purposes, one



202 Ralf-Philipp Weinmann and Kai Wirt

would expect the cycle to go through a minimum of 2% states. Using
Floyd’s cycle-finding algorithm however, we observed that after a rela-
tively short preperiod there exist only a few different cycle lengths for
different key/nonce combinations; all of these have a length of I, < 10,
which of course is much smaller than 2%¢. When comparing the set
of states in several cycles with the same length which where generated
by different key/nonce pairs, one notices that these are disjunct; many
different cycles with length [, exist.

On the other hand, taking only A and X in account shows that if
two cycles have the same length [, then [, is equal too. Moreover the
sequence of states in feedback-shift-register 1 is equal. This means that
if I, is equal for two cycles then the registers A and X for these cycles
are going through the same values.

We conducted a total of 10° experiments with random key/nonce pairs
to determine the most probable period lengths for the state transition
function operating on register A. Table 3 shows some small cycle lengths
ls together with the number of times n(l;) we observed a cycle of this
length in our test and a(ls) the average length of the pre-period for a
given cycle length.

Table 3. Probability distribution for small cycles.

n(ls) ls a(ls)
36106 22778 | 152854.6
24196 97494 83098.3
18054 | 121992 27726.2
15171 42604 65556.8
3244 25802 17643.8
1495 108 21051.6
131 2391 3138.5

In 1.6% of all cases we observed cycle lengths not listed in the above
table. For each of these the probability of occurrence must be lower than
0.2%. This observation leads to the following attack:

1: Calculate a table T" with the states of the small cycles
2: for every state in T do

3. Test if the state is correct

4:  Reconstruct the remaining registers

5. end for

It remains to show how one can determine if the state is correct and
how the remaining registers can be reconstructed.

4.2 Finding the Correct Value for FSR1

The trivial method of finding the correct value for FSR1 is to simply
try all possible values. That means that one searches through all states
which belong to one of the small cycles. Summing up the number of
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states in Table 3 shows that in 98.4% of all cases testing 313 169 possi-
bilities is sufficient; this is far less than the 244 possible values for A and
X.

4.3 Reconstructing the Remaining Registers

The stream cipher’s output is calculated by XORing Z, E and B°“.

Since we can now consider A to be known, Z is fully determined. For
all possible 29 values of E, F' and ¢ do the following:
Consider all bits of B at clock cycle t as variables with valucs in GF(2).
Generate a system of equations describing the two output bits at clock
cycle t + k as linear equations of bits of these variables. This system is
linear since the additional inputs for the feedback shift register are fully
determined by A and hence are known. In other words: for every state
of A a system of linear equations that fully describes B with respect to
B°¥ exists. Therefore this system can be efficiently solved using Gaus-
sian elimination. If the system is inconsistent then the guess for E, F
and ¢ was wrong and has to be altered.

The last step of the attack is to determine which of the possible so-
lutions for the linear equations system is the correct one. This has to
be done because different values for E, F' and ¢ may lead to a solution
of the system. The correct value can be determined simply by running
the keystream generator with the calculated state and checking if the
output corresponds to the actual output of the generator.

4.4 Results

Some of the generated equations are linearly dependent. Experimen-
tally we derived that for finding a unique solution to the system described
above, 60 equations are sufficient.

For carrying out the attack one thus needs to solve approximately
219 . 29 — 228 gystems of linear equations, each of which contains 60
equations in 40 unknowns. Experiments showed that this can be done in
less than an hour on a 1.25 GHz PowerPC G4. We stress that our attack
leaves much room for improvement. It might be possible to increase our
chances at guessing the correct value for A from statistical deviation in
the output of the stream cipher. But already our unoptimized version
shows that the stream cipher can be broken in a very short time. Also,
this attack is well suited to parallelization.

5. Analysis of the Block Cipher

We note that the round function ¢ is a weak permutation. Given
the inputs x1,22 and outputs y1 = ¢(z1,k) and y2 = @(x2,k) of a
single round it is trivial to determine the round subkey k. The key



204 Ralf-Philipp Weinmann and Kai Wirt

schedule however seems to make the cipher resistant against slide attacks
[Biryukov and Wagner, 1999].

5.1 Linear Approximation of the S-Boxes

The maximum bias of both S-Boxes is %. Trying to find a linear path
through several rounds of the cipher we see that the number of active
S-Boxes in the path increases exponentially in the number of rounds.
Because of this fact and the high number of rounds, the authors believe
that classical linear cryptanalysis poses not threat to the cipher.

5.2 Polynomial Interpolation of the S-Boxes

We have interpolated the S-Boxes as polynomials over fields GF(28) =
GF(2)[X]/m(X) for all m € GF(2)[X] with deg(m) = 8 and m ir-
reducible. The resulting polynomials are all dense and of maximum
degree. Interpolating bit traces of the S-Boxes results in polynomials
consisting of 117-137 terms. Two of them are of degree 8, the other 6
of degree 7.

Thus we conclude that both representations are not useful for alge-
braic cryptanalysis of the cipher.

6. Conclusion

In this paper we described the Common Scrambling Algorithm and
presented an analysis of the underlying stream and block cipher parts.
We showed that the stream cipher is weak and can be efficiently broken.
We also pointed out some properties of the block cipher which even-
tually could be used in an successful attack. However, since the block
cipher uses 56 rounds we believe that such an attack would have to use
sophisticated techniques.

Cryptanalyzing both stream and block cipher at the same time seems
to be a task too daunting to attempt. Finding special cases where plain-
text and corresponding ciphertext can be obtained that is encrypted with
only one of the ciphers facilitates easier cryptanalysis. For the stream
cipher these are packets with a residue. A sufficiently long adaption field
on the other hand can lead to packets which are only protected by the
block cipher.

We believe that extending the attack on the stream cipher to a key
recovery is not a trivial task. Since the state update function of the
stream cipher is irreversible and nonlinear, the only option we see at
this point for recovering the key is to solve a large system of polynomial
equations for different nonces and key streams. The nonlinear equations
in this system are of the form seen in Table 6.

There are various directions for future research on these topics. First
of all the attack presented offers room for further improvements like the
reduction of the necessary register guesses. Investigating how to recover
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the Common Key K from a known state of the stream cipher is another
logical step. Finally, the block cipher needs more scrutiny.

7. Appendix

Table 4. S-Boxes of the stream cipher.

[Input[[8:[S52]S5]54[S5][S6][S7] [Input][Si[S;]Ss]Ss][Ss]5]S]
00000 {|{10|11{10|11|10|00 |00 10000 {{00}11{01({01[10{10|01
00001 [|00{01}00]|01]|00|{01|11 10001 || 11{01}11|00]11|11]00
00010 {|01|00(01]|10{00]|10|10 10010 f{ 11|00(00|11|10]00(11
00011 j01|10|{10|11f01}11(10 10011 jo0|11f01]|01({00|10f11
00100 [{10{10|10|00|11{01 (11 10100 || 10{11[{11{10|00|11]00
00101 {{11)11(11{10{10|10{00 10101 f{10|10f00|11(11}l00|01
00110 jj1111f11)01|11|10{00 10110 {j01(00|10|00|01]|0101
00111 |(00|00]01}10]10|00 |01 10111 |01 |10|10|11{01}{01|10
01000 {/11]01]01|0100|00(11 11000 |} 10/00[10{00{01| 10|10
01001 ||10|11)01{10)01(01|00 11001 || 10|00 (00| 11(00}01 |11
01010 {j10|10f00f00|11|11]|01 11010 {{00|01{01]10;11]01{01
01011 00|01 (11|01 [11{00(11 11011 f{ 11101000 (10|10 |00
01100 |01 (00 (11[11|01]10]01 11100 {{01|10(00|01| 11|00} 10
01101 |{01|00{00|00(00}11}10 11101 ({01 |01(11|10(01|11(11
01110 ({0001{10|00|10|01]10 11110 |[11(11({11}10{00 (11|00
01111 (|{11[10{00j11{01 (11|01 11111 {0001 (01|01[10|00|10

Table 5. S-Box of the block cipher. Output arranged row-wise; lower nibble on
horizonal, upper on vertical.

[ [Pox00px010x02px03]0x04]0x050x06}0x07[0x08)0x09]0x0APx0BLx0Cx0DPx0EDxOF|
0x00/0x3A{0xEA0x680xFEI0x33/0xE90x88/0x1A0x830xCFOxE1{0x7FOxBAOXE2/0x38/0x12
0x0110xE8[0x27/0x610x9510x0C0x360xE50x700xA2)0x06/0x820x7C0x170xA30x260x49
0x020xBE0x7A0x6D0x47/0xC10x510x8F0xF30xCCOx5B0x670xBD0xCD0x18/0x08(0xC9
0x030xFF0x6910xEF0x0310x4E0x480x4A0x840x3F0xB40x100x040xDCOxF50x5C0xC6
0x04/10x160xAB0xACOx4CI0xF10x6A0x2F0x3C0x3B0xD40xD510x940xD00xC40x63/0x62
0x050x710xA10xF90x4F0x2E0xAA0xC50x56 0xE30x39/0x9310xCE0Xx650x640xE4/0x58
0x086{0x6C0x19/0x420x790xDDOXEENx960xF60x8A0XECOx1E0x8500x53|0x450xDE{0xBB
0x07|)0x7E0x0A0x9A0x13j0x2A10x9D0xC2/0x5E0x5A0x1F0x32|0x3500x9CI0xA8/0x7 310x30
0x08/10x29/0x3D0xE70x92/0x870x1B0x2B0x4B0xA50x57 0x97/0x400x150xE6{0xBCIOX0E
0x0910xEB0xC3{0x34/0x2D10xB80x440x250xA40x1C0xC70x23/0xED0x90/0x6E0x50/0x00
0x0A0x990x9E0x4D0xD30xDA0x8D0x6F0x5F0x3E0xD70x2110x740x860xDF|0x6B0x05
0x0B||0x8E0x5D0x370x11/0xD2[0x280x750xD60xA70x770x240xBF0xF00xB0{0x02(0xB7
0x0G0xF8/0xFC0x8110x0910xB1/0x010x76/0x910x7DPOx0F0xC80xA00xF20xCBI0x78/0x60
0x0D|0xD10xF70xE00xB50x980x22/0xB310x20/0x1D{0xA6/0xDBI0x7B0x59/0x9F 0xAE0x31
0x0H|0xFB|0xD3/0xB6/0xCA0x43[0x72[0x070xF4(0xD80x410x140x550x0D0x54/0x8BJ0xB9
0x0F|0xAD0x460x0B0xAF0x800x52/0x2CI0xFA0x8CI0x890x66|0xFD0xB2/0xA9{0x9B[0xCO
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Table 6. Algebraic description of the S-Boxes used in the stream cipher.

S1,0 = abce+ abc+ abd + bde +ab+ae+be+ce+b+d

S1,1 = abed + abde + abe + abd + acd + ade + bed + bee +
ab+ac+bc+bd+be+cd+cetdetat+d+e+1

S20 = abce + abde + ade 4 bce + bde +ab+ac+ce+ct+d+1

S2,1 = abde+ abc+ abd +abe +acd+cde+cd+ce+b+d+e+1

S30 = cetdetat+btd

S3,1 = abed + acde + abe + ac + abe + acd + ace + ade + bed + bde +
cde+ad+bc+bd+be+cd+ce+a+bt+d+e+1

S4,0 = abed + abde + acde + abe 4 abe 4 bde + ab + ad 4 ae + be +
bet+detc+d+1

S4,1 = abed + abde + acde + abe + abe + bed + cde + ad + ab + ae +
det+a+b+cte+1

Ss,0 = abde + acde + acd + abe + abd + ace + bee + cde + ab + ac +
ae + bd + be + ce + de + ¢

S5,1 = abed + abce + acde + abd + abe + acd + bed + bee +
bde +cde +ac+adt+aet+be+ecd+cet+de+b+dtet1

Se,0 = abed + abde + acde + acd + ade + bed + cde + be + bd 4 cd +
ct+e

Se,1 = abe+ade+bee+bde+bec+ceta+d

S70 = abdet+abd+cde+bc+cd+de+a+btcte

S71 = abed + abdebe + acde + acd + ade + bde + ac + ae + de +

b+c+d+te



References

[Bewick, 1998] Bewick, Simon (1998). Descrambling DVB data according to ETSI
common scrambling specification. UK Patent Applications GB2322994A /
GB2322995A.

[Biryukov and Wagner, 1999] Biryukov, Alex and Wagner, David (1999). Slide at-
tacks. In Knudsen, Lars, editor, Fast Software Encryption: 6th International Work-
shop, FSE’99, Rome, Italy, March 1999. Proceedings, volume 1663 of Lecture Notes
in Computer Science, pages 245—. Springer-Verlag Heidelberg.

[European Telecommunications Standards Institute, 1996] European Telecommuni-
cations Standards Institute (1996). ETSI Technical Report 289: Support for use
of scrambling and Conditional Access (CA) within digital broadcasting systems.

[Golomb, 1967] Golomb, Solomon W. (1967). Shift Register Sequences. Holden-Day
San Francisco.

[Pseudonymous authors, 2003] Pseudonymous authors (2003). CSA — known facts
and speculations. http://csa.irde.to.

[Rueppel, 1986] Rueppel, Rainer A. (1986). Analysis and design of stream ciphers.
Springer-Verlag New York, Inc.

[Watts et al., 1998] Watts, Davies Donald, Ashley, Rix Simon Paul, and Jacobus,
Kuehn Gideon (1998). System and apparatus for blockwise encryption and de-
cryption of data. US Patent Application US5799089.



AN EXTENSION OF TYPED MSR
FOR SPECIFYING ESOTERIC PROTOCOLS
AND THEIR DOLEV-YAO INTRUDER

Theodoros Balopoulos, Stephanos Gritzalis, and Sokratis K. Katsikas
Laboratory of Information and Communication Systems Security

Department of Information and Communication Systems Engineering

University of the Aegean

Karlovassi, Samos, GR-83200, Greece

{tbalopoulos,sgritz,ska} @aegean.gr

Abstract Esoteric protocols, such as electronic cash, electronic voting and selective dis-
closure protocols, use special message constructors that are not widely used in
other types of protocols (for example, in authentication protocols). These mes-
sage constructors include blind signatures, commitments and zero-knowledge
proofs. Furthermore, a standard formalization of the Dolev-Yao intruder [6] does
not take into account these message constructors, nor does it consider some types
of attacks (such as privacy attacks, brute-force dictionary attacks and known-
plaintext attacks) that esoteric as well as other types of protocols are designed to
protect against. This paper aims to present an extension of typed MSR [3, 4] in
order to formally specify the needed message constructors, as well as the capa-
bilities of a Dolev-Yao intruder designed to attack esoteric protocols.

Keywords:  Specification of security protocols, Dolev-Yao intruder, esoteric protocols, pri-
vacy, typed MSR

1. Introduction

This paper builds on the typed MSR specification language [3, 4] and aims
to make it suitable for the specification of esoteric protocols, as well as for the
specification of a version of the Dolev-Yao intruder that is designed to attack
such protocols. Some aspects of these extensions are useful in other types of
protocols as well. The term “esoteric protocols” is taken from Chapter 6 of [9],
and refers to a family of protocols such as electronic cash, electronic voting and
selective disclosure protocols.

The paper is organized as follows. In Section 2, we give an overview of
the standard version of typed MSR, as well as our extensions of the language’s
message constructors. In Section 3, we demonstrate how our extensions can



210 Theodoros Balopoulos, Stephanos Gritzalis, and Sokratis K. Katsikas

be used to make abstraction of two simple esoteric protocols. In Section 4, we
give an overview of typing in typed MSR, present our typing extensions and
apply them to our newly introduced message constructors. In Section 5, we use
our syntactical and typing infrastructure to formally specify the capabilities of
a Dolev-Yao intruder targeted for esoteric protocols. We conclude the paper
with Section 6.

2. Typed MSR

Typed MSR is a strongly typed specification language for security proto-
cols, aiming to discover errors in their design. It is particularly suitable for
esoteric protocols because it features memory predicates, which enable it to
faithfully encode systems consisting of a collection of coordinated subproto-
cols — a common characteristic of esoteric protocols (consider for example the
electronic cash protocol, which consists of a issuing and a showing/spending
subprotocol). However, the standard language does not support the message
constructors needed for esoteric protocols. In Section 2.1 we give an overview
of messages in the standard version of typed MSR, and in Section 2.2 we in-
troduce the needed message constructors.

2.1 Overview of Messages in Typed MSR

In typed MSR, messages are obtained by applying message constructors to a
variety of atomic messages. Typically, the atomic messages include principals,
keys, nonces and raw data. This is formalized by the following grammatical
production:

A (Principal)
K (Key)

n  (Nonce)

m  (Raw data)

Atomic messages: a

—— i

In typed MSR A, k, n and m range over principal names, keys, nonces and raw
data respectively. Raw data denotes pieces of data whose sole function in a
protocol is that they are transmitted.

The message constructors typically present in typed MSR are those formal-
ized by the following grammatical production:

Messages: t 1= a (Atomic messages)
| x (Variables)
| tity  (Concatenation)
| {t}x  (Symmetric-key encryption)
| {t}x (Asymmetric-key encryption)
| [tk (Digital Signature)
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We will use the letter ¢ (possibly sub-scripted) to range over messages. We will
write A, k, n and m (possibly sub-scripted) for atomic constants or variables
that are principals, keys, nonces and raw data respectively. We will also use the
letter B for principals and the letter S for servers (which are also principals).
Note that in typed MSR, the seriffed letters are used whenever the object we
want to refer to cannot be but a constant.

In this paper we choose a different meaning for the digital signature con-
structor than the meaning chosen in standard MSR. Instead of [¢]; denoting
both the message t and its digital signature using key k, here it will denote
only the latter. This will become evident in Section 3, where we present a high
level view of some esoteric protocols.

2.2 Adding Message Constructors for Esoteric Protocols

To cope with esoteric protocols we add message constructors for blinding,
commitment and zero-knowledge proofs:

(see above)

Messages: t = ...
| (t)k (Blinding)
I
I

n
It (Commitment)
Z(t,ns,k,ny) (Zero-knowledge proof)

The abstraction of blinding is based on Chaum’s blinding [8, 2, 5], accord-
ing to which the construction of a blinded message depends on a blinding factor
(which we can abstract as a nonce) and on a public key. The fundamental prop-
erty is that if message (¢ )¥ is signed using &’ (the private key corresponding
to public key k), the resulting message can be unblinded by those who know
nonce n to produce the digital signature of message ¢ signed using &’

The abstraction of commitment is based on the non-interactive bit commit-
ment using one-way hash functions [9, 2]. According to this method, the com-
mitment of a message is the hash of the concatenation of the message with a
salt value (which we can abstract as a nonce). The fundamental property is that
someone who sees [t ,, ¢ and n will be convinced that ¢ and n were the values
used in the computation of |¢|,,, and that no other values could have been used.

The abstraction of a zero-knowledge proof is based on the non-interactive
cut-and-choose protocol introduced in the selective disclosure protocol of Holt
and Seamons. The interested reader can refer to Section 3.2.2 of [7]. The fun-
damental property is that someone who observes Z(t,n,, k,n¢) will deduce
the values of # and ( |t],, )& , and he will gain no knowledge about the val-
ues of n,, k and ny. To make the protocol descriptions more readable, we
will sometimes annotate a zero-knowledge proof message constructor with the
information one gets by observing it as follows:

Z(t, n5>ka7bf) ~ t, <”t”'fbs >£€Lf
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Notice that we have chosen to make all our new message constructors non-
interactive, so that they share this property with the standard message construc-
tors of Section 2.1.

3. Esoteric Protocols Overview

At this point, we will demonstrate how the message constructors described
above may be used to make abstractions of two simple esoteric protocols: an
electronic cash protocol and an electronic voting protocol. The aim is not
to make abstractions of real-world esoteric protocols, but only to justify the
introduction of our new message constructors.

3.1 Electronic Cash Protocol

Issuing.  Alice wants to have some e-cash issued by her bank. To do this,
Alice authenticates herself to the bank server (so that the server can know
which account to debit) and sends a zero-knowledge proof. The server verifies
the proof, checks that message m has the format of an e-coin (e.g. it is equal to
the message value = $10), debits Alice’s account, signs the blinded e-coin’s
commitment and sends the signature to Alice.

Av—> S Z(WL,S,kS,f)Mma<“m“8>[;'s
S = A [(mla)E

Showing.  Alice unblinds the signature of the blinded commitment, which
gives her the signature of the commitment. To spend the money at Bob’s shop,
she uses an anonymous channel to send to Bob the signature of the commitment
and the data used in the computation of the commitment. Bob verifies the bank
server’s signature and checks that the commitment is indeed computed using
the data sent. He then authenticates himself to the bank server and forwards
to it all the e-coin data. The server verifies its signature, checks again the
commitment’s computation, checks further that the e-coin has not been spent
before (double spending) and credits Bob’s account.

A — B : ms,[|m]sly,
B — S : Bamas’[”m"S]ka

Notice that the server does not know s, so even if Bob and the server cooperate
in an effort to disclose Alice’s identity, they will fail.
3.2 Electronic Voting Protocol

Issuing.  Alice wants to participate in an electronic election held by a trusted
voting server. To do this, Alice authenticates herself to the server (so that
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the server knows she is eligible for voting) and sends a zero-knowledge proof
for each of the possible votes of this election. The server verifies the proofs,
checks that messages mq, mo, ... represent the possible votes, signs the blind
commitment of each vote and sends the signatures back to Alice.

A — S Z(mi,si,ks, f1), Z(mg, s2,ks, fa), -
S — A [<||m1||s1)fvf]kf97[<||m2”52>];f]k'57---

Showing.  Alice unblinds the signatures of the blinded commitments, which
gives her the signatures of the commitments. She can now choose the commit-
ment of the vote she wishes to cast, and send the corresponding signature to the
server via an anonymous channel, together with the data used in the computa-
tion of the commitment (one of which is the vote’s representation). The server
verifies its own signature and after checking that the commitment is indeed
computed using the data send, it accepts Alice’s vote.

A — 5 maasay[”ma”Sa]kg

Notice that the server has no way of linking s, to Alice.

4. Types

Typed MSR employs types to enforce basic well-formedness conditions
(e.g. that only keys can be used to encrypt a message), as well as to provide a
statically checkable way to ascertain desired properties (e.g. that no principal
can grab a key he is not entitled to access).

4.1 Overview of Types in Typed MSR

The typing of typed MSR is based on the notion of dependent product types
with subsorting [1] and the basic types used are summarized in the following
grammar:

Types: T == principal (Principals)
|  nonce (Nonces)

|  shK A B (Shared keys)
|  pubK A  (Public keys)

| privK k& (Private keys)
|

msg (Messages)

We will use the letter 7 (variously decorated) to range over types. The
types principal and nonce are used to classify principals and nonces respec-
tively. The type shK A B is used to classify the keys shared between A and B.
The type pubK A is used to classify the public keys of A. The type privK £ is
used to classify the private key that corresponds to the public key k. Finally,
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the type msg is used to classify generic messages, which include raw data, but
also all the other stated types.

The notion of dependent product types with subsorting we mentioned above
accommodates our need of having multiple classifications within a hierarchy.
For example, everything that is of type nonce, is also of type msg — but the
inverse is not true. Therefore, we say that nonce is a subsort of msg. We will
use the notation 7 :: 7/ to state that 7 is a subsort of 7/, The following rules
can now be presented:

principal :: msg nonce :: msg shK A B :: msg

pubK A :: msg privK k :: msg

4.2 Adding Types for Esoteric Protocols

To better cope with esoteric protocols, we add types for tractable, semi-
tractable and intractable messages:

Types: T = (see above)
| tract (Tractable messages)
| semitract (Semitractable messages)
| intract (Intractable messages)

These three types are used to classify messages according to their common-
ness. In other words, they qualitatively classify the number of possible values
a message can have.

The type tract is used to classify messages that are very common. Because
of the tractable number of their possible values, we consider that an intruder
(regardless of whether these messages are publicly known or not) is able to
to find them out by successfully employing a brute-force dictionary attack on
them. On the other hand, if a principal reveals the same (tractable) message
in more than one protocol or subprotocol execution, the intruder will not be
able to link these executions together (at least not because of this particular
message). Therefore, this classification isolates pieces of information on the
secrecy of which it is erroneous to base the correctness of a protocol, but on
the anonymity of which it is safe to do so.

The type intract is used to classify messages that are extremely uncommon.
These are pieces of information on the secrecy of which it is safe to base the
correctness of a protocol, but on the anonymity of which it is certainly erro-
neous to do so.

The type semitract is used to classify messages that are common enough
to be considered realistic candidates for brute-force dictionary attacks, but not
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common enough to be considered anonymous. It is not safe to base the cor-
rectness of a protocol either on the secrecy of such pieces of information, nor
on their anonymity.

We will now classify each of the standard types according to their tractabil-
ity. Private keys, shared keys and nonces should be regarded as intractable.
Principals should be regarded as semitractable: we should not base the cor-
rectness of protocols on the number of available principals. Public keys should
also be regarded as semitractable for the same reason. Notice that this clas-
sification conveniently enforces that everyone has access to public keys. The
following rules can now be presented:

principal :: semitract nonce :: intract shK A B :: intract

pubK A :: semitract privK k :: intract

The classification of messages that are not keys, nor nonces, nor principals
will be dealt with by signatures, which are described in Section 4.3. To com-
plete our subsorting rules, we add rules that classify tractable, semitractable
and intractable messages as messages:

tract :: msg semitract :: msg intract :: msg

4.3 Signatures

Typed MSR has typing rules that check whether an expression built accord-
ing to the syntax of messages can be considered a ground message. These
rules systematically reduce the the validity of a composite message to the va-
lidity of its sub-messages. In this way, it all comes down to what the types of
atomic messages are. Typed MSR uses signatures to achieve independence of
rules from atomic messages. A signature is a finite sequence of declarations
that map atomic messages to their type. The grammar of a signature is given
below:

Signatures: ¥ 1= . (Empty signature)
| X, a:7 (Atomic message declaration)

For our extended type system, we will need two signatures. Signature 3
will map atomic messages to one of the standard types, and signature I" will
map them to one of the extended types, i.e. classify them into tractable, semi-
tractable or intractable. We will write ¢ :; 7 to say that message ¢ has type 7
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in signature 33, and we will write ¢ :; 7’ to say that message ¢ has type 7’ in
signature I'. Hence the following two rules:

a1, XY FaxT Tya:r7, I Faryr

4.4 Type Rules for Message Constructors

We will now introduce type rules for all the message constructors presented
in Sections 2.1 and 2.2 that use the new types introduced in Section 4.2 in order
to further check the groundness of messages.

Concatenation.  The concatenation of two messages of the same type will
yield a message of that type.

T'Fti:r I'Eity:r
'Ftity: 7
The concatenation of two messages of different types will yield a message of
the least tractable type among the types of the original messages.
I' -ty :tract T F t5: semitract
I' b t1tg : semitract I' F t911 : semitract

' - ty:tract T' b ¥y :intract
' titg:intract T F t9tq @ intract

' - ¢1 :semitract I + t9:intract
I'F tytg:intract T F {9¢; :intract
Note that in typed MSR concatenated messages can be taken apart.

Symmetric-key and asymmetric-key encryption.  The tractability of the
resulting ciphertext is defined to be the same as the tractability of the plaintext.

PFt:7 ZFEk:shKkAB PHt:7 X+ k:pubKA

DEA{the:7 L'k {thr:7
The implication is that the ciphertext of a tractable or semitractable message
can now be cryptanalyzed by an intruder and the original plaintext will in-
stantly be made available. The aim is to enforce that only intractable messages
are enciphered, so that known-plaintext attacks are not possible. One way to
make a tractable or semitractable message into an intractable one is to concate-
nate it with a nonce (see rules for concatenation).

We believe that these type rules are fully in line with the black-box view
on cryptography that the Dolev-Yao abstraction adopts. The type rules only
enforce a safer use of cryptography; they do not poison the abstraction with
low-level details.
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Digital signature.  Similar considerations apply to digital signatures.
L'ktir X FKE privKk
Dk [tly:7

Commitment. Commitments may be considered to be intractable because
of the nonce (salt value) used in the calculation.
I'kt:7 X F ng:nonce
' |t]n, : intract

Blind signatures.  Blind signatures may be considered to be intractable be-
cause of the nonce (blinding factor) used in the calculation.
't Yk Ek:pubKA X F ny:nonce
' (t)k :intract

nf

Zero-knowledge proofs.  The zero-knowledge proof itself can be consid-
ered to be intractable, as two nonces are used in its calculation (a salt value
and a blinding factor). However, we require that the underlying message of a
zero-knowledge proof is tractable in order to enforce anonymity, and thus pro-
tect privacy. Consider for example that, if e-coins were issued at any possible
denomination, the bank would be able to identify the spender in most cases.

I'+t:tract X F ng:nonce X F k:pubKA X F ns:nonce
' Z(t,ns, k,ny) : intract

5. The Dolev-Yao Intruder

The Dolev-Yao abstraction [6] assumes that elementary data, such as keys or
nonces, are atomic rather than strings of bits, and that the operations needed to
assemble messages, such as concatenation or encryption, are pure constructors
in an initial algebra. Typed MSR fits very well in this abstraction: elemen-
tary data are indeed atomic and messages are constructed solely by message
constructors.

In this Section, we present a version of the Dolev-Yao intruder which is use-
ful in discovering more types of attacks in esoteric (as well as other types of)
protocols. The rules that formally describe the new capabilities of the intruder
are represented in the same way as in [3], i.e. using the format shown in the
following diagram:

quantifiers side quantifiers side

- Owner
( Universal Left-hand Existential Right-hand )

It has been proved [10] that there is no point in considering more than one
Dolev-Yao intruder in any given system. Therefore, we can select a princi-



218 Theodoros Balopoulos, Stephanos Gritzalis, and Sokratis K. Katsikas

pal, | say, to represent the Dolev-Yao intruder. Furthermore, we associate |
with an MSR memory predicate M;(_), whose single argument can hold a
message, to enable | to store data out of sight from other principals.

5.1 Standard Version of the Dolev-Yao Intruder

The standard version of the Dolev-Yao intruder can do any combination of
the following operations:

Intercept and learn messages

Transmit known messages

Decompose known (concatenated) messages
Concatenate known messages

Decipher encrypted messages if he knows the keys
Encrypt known messages with known keys

Sign messages with known keys

Access public information

Generate fresh data

The interested reader can refer to [3] for the formal specification of these op-
erations in typed MSR.

5.2 Extended Version of the Dolev-Yao Intruder

The version of the intruder that is presented here is an extended version in
two ways.

Firstly, one of the intruder’s standard operations will be generalized in line
with the new types introduced in Section 4.2. More specifically, we will replace
the last operation, i.e. the intruder’s ability to generate fresh data, with two new
operations: the ability to generate fresh intractable data, and the ability to guess
tractable and semitractable data. The intruder will be able either to guess the
exact message required for his/her attack if this is possible, or to generate a
fresh message of the required type otherwise.

Secondly, the intruder will now be able to handle messages constructed us-
ing the message constructors introduced in Section 2.2.

We will now formally specify the new operations in typed MSR.

Generate fresh intractable data.  The intruder may generate fresh nonces,
fresh private keys, fresh shared keys, as well as other intractable messages.

(+ — 3t intract. M (8))
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Guess tractable and semitractable data.  The intruder may guess or get
access to public keys, principals, as well as other tractable or semitractable
messages.

(Vt:tract. - — M () (Vt : semitract. - — M, (£))’

Notice that this rule can be used together with the previous one to allow the
intruder to generate a key-pair by first generating a fresh private key, and then
by ‘guessing’ the corresponding public key. However, the intruder is not able
to guess the private keys of other principals.

Blind messages. The intruder may blind a message given a public key and
a blinding factor (nonce).

YVt msg.
T My (t)
Y A :; principal. i
, M (k) — M ((t),
Yk pubK A. M, (n) ( 1)

V¥ n :; nonce.

Unblind messages.  The intruder may unblind a (blinded) message given
the blinding factor (nonce).

YVt :; msg. ( )
V A iy principal. M, ((¢)F
Yk pubK A. M (n) - M)

V7 :; nonce.

Unblind signatures.  The intruder may unblind a (blinded) signature given
the blinding factor (nonce), if the public key used in the blinding corresponds
to the private key used in the signing.

V't :; msg.

YV A :; principal. 1

Yk pubK A. (H”n]’f/) — M ([t]w)
VE :; privK k. Mi(n)

V¥ n iz nonce.

Commit to a message.  The intruder may commit to a message given a salt
value (nonce).

Vtimsg.  M(¢)
Vn :; nonce. Mj(n)

|
- M.<||tnn>)
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Generate a zero-knowledge proof. The intruder may generate a zero-
knowledge proof given a message, a salt value (nonce), a public key and a
blinding factor (nonce).

Vit :; msg.
¥V ng i honce. M EZ))
VA principal. S — M (Z(¢, ns, k,ng))
Wk o pubk A, M (E)
Mi ()

Vny iz nonce.

Observe a zero-knowledge proof. The intruder will get the same informa-
tion as anyone else who observes the zero-knowledge proof (see Section 2.2).

|

vt :E mSg'

VY ng :x nonce. Mi (¢)

VA principal. My (Z(t, ng, kyng)) — (< [, )% )
Vk ‘L pUbK A | o

Vny :; nonce.

6. Summary and Conclusions

In this paper, we have presented an extension of typed MSR that makes it
more suitable for the specification of esoteric protocols. The introduced non-
interactive message constructors for blind signatures, commitments and zero-
knowledge proofs make the standard language rich enough to specify protocols
such as electronic cash, electronic voting and selective disclosure protocols.
The introduced type rules make the standard language more capable of stati-
cally checking for desired properties in esoteric, as well as other types of pro-
tocols. More specifically, the introduced types can be used in the specification
of protocols in order to statically check against attacks on privacy, brute-force
dictionary attacks and known-plaintext attacks. Finally, the introduced version
of the Dolev-Yao intruder creates a formal framework on which attacks on
esoteric protocols may be attempted.

Further work will include the development of a stricter and richer type sys-
tem and the formal specification of real-world esoteric protocols in the ex-
tended language.
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ROBUST VISUAL HASHING
USING JPEG 2000

Roland Norcen and Andreas Uhl
Department of Scientific Computing, Salzburg University

Abstract  Robust visual hash functions have been designed to ensure the data
integrity of digital visual data. Such algorithms rely on an efficient
scheme for robust visual feature extraction. We propose to use the
wavelet-based JPEG2000 image compression algorithm for feature ex-
traction. We discuss the sensitivity of our proposed method against
different malicious data modifications including local image alterations
and Stirmark attacks.

Keywords: Image authentication, robust feature extraction, JPEG 2000

1. Introduction

The widespread availability of digital image and video data has opened
a wide range of possibilities to manipulate these data. Compression algo-
rithms change image and video data usually without leaving perceptible
traces. Beside, different image processing and image manipulation tools
offer a variety of possibilities to alter image data without leaving traces
which are recognizable to the human visual system.

In order to ensure the integrity and authenticity of digital visual data,
algorithms have to be designed which consider the special properties of
such data types. On the one hand, such an algorithm should be robust
against compression and format conversion, sincc such opcrations are
a very integral part of handling digital data. On the other hand, such
an algorithm should be able to recognize a large amount of different
intentional manipulations to such data.

Classical cryptographic tools to check for data integrity like the cryp-
tographic hash functions MD5 or SHA-1 are designed to be strongly
dependent on every single bit of the input data. This property is im-
portant for a big class of digital data (for instance compressed text,
executables,...). Such classical hash functions are not suited for the
class of typical multimedia data.
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To account for these properties new techniques are required which do
not assure the integrity of the digital representation of visual data but
its visual appearance or content. In the area of multimedia security two
types of approaches have been proposed so far: semi-fragile watermark-
ing and robust multimedia hashes (Fridrich, 2000; Fridrich and Goljan,
2000; Kalker et al., 2001; Radhakrishnan et al., 2003; Skrepth and Uhl,
2003; Venkatesan et al., 2000).

Robust hash functions usually rely on a method for feature extraction
to create a robust scheme for ensuring data integrity. Here, different
algorithms have been proposed to extract a specific set of feature values
from image or video data. The algorithms are designed to extract fea-
tures which are sensitive to intentional alterations of the original data,
but not sensitive to different standard compression algorithms like JPEG
or JPEG2000.

The most efficient methods for feature extraction use transformation-
based techniques. The DCT or the wavelet transform are two examples
which can be employed in this case (Skrepth and Uhl, 2003).

In this work we discuss the possibilities how to use JPEG2000 for
robust feature extraction. The basis for our method is a recently pro-
posed algorithm (Norcen and Uhl, 2004) where an authentication scheme
for JPEG2000 bitstreams is discussed, and its robustness regarding
JPEG2000 and JPEG compression and recompression is shown. Here,
we will show detailed results regarding the sensitivity towards local and
global image alterations and we will discuss application scenarios how
this approach can be used in real applications.

2. JPEG2000

The JPEG2000 (Taubman and Marcellin, 2002) image coding stan-
dard uses the wavelet transform as energy compaction method, and oper-
ates on independent, non-overlapping blocks whose bit-planes are coded
in several passes to create an embedded, scalable bitstream.

The final JPEG2000 bitstream is organized as follows: the main
header is followed by packets of data which are all preceded by a packet
header. In each packet appear the codewords of the code-blocks that
belong to the same image resolution (wavelet decomposition level) and
layer (which roughly stand for successive quality levels). Depending
on the arrangement of the packets, different progression orders may be
specified (e.g., resolution and layer progression order).
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2.1 Using the JPEG2000 bitstream for feature
extraction

The JPEG2000 bitstream is analyzed for useful robust feature values.
Therefore, the bitstream is scanned from the very beginning to the end,
and the data of each data packet — as they appear in the bitstream,
excluding any header structures — are collected sequentially to be then
used as visual feature values.

Testing of the JPEG2000 coding options in Norcen and Uhl, 2004
showed the best set of coding parameters to be used for feature extrac-
tion: these options include the JPEG2000 standard parameter setting
as well as coding in lossy mode in layer progression order, together with
a varying wavelet-transform decomposition level.

3. Experiments: Sensitivity Results

We use classical 8bpp image data in our experiments, including the
well known lena image at varying image dimensions (512 x 512, 1024 x
1024, and 2048 x 2048 pixels), the houses (see 2.a), the plane (see l.a),
the graves image (see 3.a), the goldhill image (see 1.c), and frame no. 17
from the surfside video sequence (see 4.a). In the following we present
detailed results regarding the sensitivity towards different local image
alterations and global Stirmark modifications:

m Jocal: different intentional image modifications:
plane: plane without call sign (see Figure 1.b)
graves: one grave removed (see Figure 3.b)
houses: text removed (see Figure 2.b)
goldhill: walking man removed (see Figure 1.d)

surfside frame: twisted head (see Figure 4.b)

m global: different Stirmark attacks (see www.cl.cam.ac.uk/ mgk25/
stirmark/)

The experiments are conducted as follows: first, the feature values
(i.e. packet data) are extracted from the JPEG 2000 codestream. Sub-
sequently, the codestream is decoded and the image alteration is per-
formed. Finally, the image is again JPEG 2000 encoded using the coding
settings of the original codestream and the feature values are extracted
and compared to the original ones.

The results which are presented in the following show the number of
feature values (in bytes) required to detect a global or local image mod-
ification. A value of — for instance — 42 means that the first 41 bytes
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(a) plane original (b) plane attacked —
no call sign

(¢) goldhill original (d) goldhill attacked —
without walking man

Figure 1. Local attacks.

of feature values are equal when comparing the computed features from
the modified image to the feature values of the corresponding original
image. The value itself can be easily interpreted: the higher the value,
the more robust is the proposed method against the tested attack. In
general, we want to see high values against JPEG2000 and JPEG com-
pression, but low values against all other tested attacks. Norcen and
Uhl, 2004 showed that the feature extraction method is robust against
moderate JPEG and JPEG2000 compression. In most cases, feature
values of 50 or more were required for detecting JPEG and JPEG2000
compression ratios up to 1 or 0.8 bits per pixel. Here we want to detect
all the described image alterations reliably. Therefore, we want to see
significant lower feature values in all tests.

Table 1 lists the obtained results for the different local attacks with
respect to a chosen wavelet decomposition level. The wavelet decom-
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(a) houses original (b) houses attacked —
without text

Figure 2. Local attacks.

(a) graves original (b) graves attacked —
removed grave

Figure 8. Local attacks.

(a) surfside fr.17 original (b) surfside fr.17 — twisted head

Figure 4.  Local attacks.
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Table 1. Local attacks: different wlev used for feature extraction.

{ l wlev9 I wlev8 l wlevT l wlev6 l wlevd | wlev4 [wlev3 |

goldhill without man | 7 7 [ 28 ] 44 | 29 [ 48 [ 155 |

houses without text 5 3 4 17 60 187
graves attacked 4 11 10 28 23 84
plane, no callsign 5 34 37 73 27 74

surfside, twisted head 17 7 20 2 68 | 412 |

DWW D

position level obviously influences the ability of our algorithm to detect
local image modifications. At a higher wlev parameter all local image
modifications are detected with a low number of feature values. At wlev
9 for instance, only 7 feature values are needed to detect any of the tested
local attacks. The modification of the graves image is detected with 2
feature values, in the plane image case only about 3 values are needed.
At lower decomposition levels, more feature values are needed in gen-
eral to detect the tested local image manipulations. At a wlev of 3, 412
feature values are needed to recognize the twisted head in the surfside
frame, at wlev 4, only 68 are needed, and at the highest tested wlev, only
about 6 are needed. Since the local changes are kept relatively small,
the sensitivity regarding local image manipulations can be considered as
high (depending on the wavelet decomposition level) — which of course
is desired.

The Stirmark benchmark is used to rate the robustness and effi-
ciency of various watermarking methods. Therefore, numerous image at-
tacks are defined including rotation, scaling, median filtering, luminance
modifications, gaussian filtering, sharpening, symmetric and asymmet-
ric shearing, linear geometric transformations, random geometric dis-
tortions, and others. More details about the different attacks can be
downloaded from the web page www.cl.cam.ac.uk/ " mgk25/stirmark/,
where the Stirmark testsetting is discussed at length. Our robust feature
extraction method is tested against the standard Stirmark attacks, and
due to the field of application our proposed method should be sensitive
regarding all Stirmark attacks. In Table 2 a selection of the obtained
results against global modifications is listed. Here we see the sensitivity
against Stirmark attacks with parameter i, b, as well as global luminance
modifications.

Again the results are delivered with respect to a chosen wlev for fea-
ture extraction, and only the results for the lena image at a resolution
of 512 x 512 pixels are given. We can observe a high sensitivity against
the presented global image alterations, except for a minimum change
of the global luminance by a factor of 1, which shows a worse result.
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Table 2. Different attacks/lena512: different wlev used for feature extraction.

] ] wlev9 | wlev8 ] wlev7 ] wlevb ] wlevh | wlev4 ] wlev3 l

stirmark i=1 1 3 6 1 5 1 1
stirmark i=2 1 6 7 2 6 1 1
stirmark b=1 1 6 6 2 3 1 1
stirmark b=2 1 4 5 12 1 1 1
luminance+1 1 4 7 12 36 9 3
luminance2 1 1 7 2 12 9 3
luminance+3 1 1 6 1 6 5 3

Nevertheless, the sensitivity is high enough — as desired. Interestingly,
a lower wlev parameter also shows a higher sensitivity against the Stir-
mark attacks with parameter i and parameter b. This effect can also be
seen in other Stirmark attacked images. For this reason, a lower wlev
could be preferred to be used for the feature extraction algorithm, since
a lower wlev is also more robust against JPEG2000 and JPEG compres-
sion. However, all the local attacks presented in Table 1 could not be
detected any longer when using such a low wlev parameter.

In Table 3 and Table 4 the results for the standard Stirmark testsetting
are listed. Again, only results for the lena image at a resolution of
512 x 512 pixels are given with respect to a specific wlev. The first
column of both tables clearly identifies the applied Stirmark attack and
should be self-contained. Overall we can see that the sensitivity against
all tested attacks is very high for a low and a high wlev value. For a
wlev of 5 and 6, only the Gaussian filtering shows slightly higher feature
values of about 36 and 23. Also a minor rotation and scale is slightly
harder detectable. Here we need about 31 and 18 (wlev 5,6) feature
values (see Table 4 first data row). The results for the other testimages
are similar and therefore not listed here. In general, the sensitivity
regarding Gaussian filtering as well as slight rotations and scalings is
slightly inferior as compared to the other Stirmark tests. Regarding the
graves image, these two test attacks are detected at a lower number of
feature values, since the graves image is more sensitive to any image
modification than the other tested images.

There is the need for a compromise between the sensitivity against
intentional image modifications on the one side, but robustness against
JPEG2000 and JPEG compression on the other side. Regarding the
robustness results in Norcen and Uhl, 2004, a wlev of about 6 or 5 seems
to be best suited to be used for JPEG2000 bitstream feature extraction.
In this case, we see a good sensitivity against local and global image
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attacks, and robustness against JPEG2000 and JPEG compression up
to moderate compression ratios.

4. Application Scenarios

Using parts of the JPEG2000 bitstream as robust visual features has
important advantages, especially in the context of real world usability:

» Soft- and hardware to perform JPEG2000 compression will be
readily available in large quantities in the near future which makes
our proposed scheme a very attractive one (and also potentially
cheap one).

» JPEG2000 Part 2 allows to use different types of wavelet trans-
forms in addition to the Part 1 pyramidal scheme, in particular
anisotropic decompositions and wavelet subband structures may
be employed in addition to freedom in filter choice. This facili-
tates to add key-dependency to the hashing scheme by concealing
the exact type of wavelet decomposition in use, which would create
a robust message authentication code (MAC) for visual data. This
could significantly improve the security against attacks (compare
Meixner and Uhl, 2004).

m Most robust feature extraction algorithms require a final conver-
sion stage to transform the computed features into binary repre-
sentation. This is not necessary since JPEG2000 is of course given
in binary representation.

We get two scenarios where our method can be applied in a straightfor-
ward manner: first, our method can be applied to any raw digital image
data, via computing the JPEG2000 bitstream and then the JPEG2000
feature values. Second, any JPEG2000 bitstream can be used itself as
starting point. In this case, the considered bitstream is the original data
which should be protected, and the features are extracted directly from
the investigated JPEG2000 bitstream. This scenario is useful, where
some image capturing device directly produces JPEG2000 coded data
instead of raw uncompressed data (i.e. JPEG200 compression imple-
mented in hardware, no raw data saved).

After having extracted the feature values out of the JPEG2000 bit-
stream, three strategies may be followed:

m The extracted features are fed into the decoder stage of error cor-
recting codes or linear codes to reduce the number of hash bits
and to increase robustness. This approach has the advantage that
different hash strings can be compared by evaluating the Ham-
ming distance which serves as a measure of similarity in this case.
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Table 3. Standard stirmark testsetting, lenab512: different wlev used for feature ex-

traction.
[ [ wlevd [ wlev8 [wlev7 [ wlev6 | wlevs [ wlev4 [ wlev3 [

17 row_5_col_removed 3 2 1
1_row_1_col_removed 26 12 7
1_row_5_col_removed 15 12 1
3x3_median_filter 1 13
5_row_17_col_removed 5 1
5_row_1_col_removed - 5 1
5x5_median_filter 1 13
7x7_median.filter 3 8
9x9_median_filter 3 13
Gaussian._filtering_3.3 23

Sharpening-3-3

cropping-1

cropping_10

cropping-15

cropping-2

cropping-20

cropping-25

cropping-5

cropping-50

cropping-75
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ratiox-0.80_y-1.00

ratiox_0.90_y_1.00
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ratiox_1.00_y_.1.20

ratiox_1.10_y_-1.00

ratiox_1.20_y-1.00

rotation_-0.25

rotation_-0.50

rotation_-0.75

rotation_-1.00

rotation_~2.00

| OO DD N =] o of b wl ol b N b =] =) =] = =] = o) =] = o] =3l ~1] wo) ol wo| ~a| o] w

rotation_0.25

—
5]

rotation.0.50

rotation_0.75

rotation_1.00

rotation_10.00

rotation_15.00

rotation_2.00

rotation_30.00

rotation_45.00

rotation_5.00

rotation_90.00

'—"l\3’—‘HMNNM%Q%N»&%%%HHHHH>—-\OOC/QD—'P—‘HHI—‘P—‘P—‘OJNN}—*»—AQHHQDOJ@AQQ;@Q‘“;

>—-Ac,o»—l»—awHw»%A%&&»&»&%MMHH»HHHwNmHHmAHHAHmA.&mHHHAgHAQA

= | = oy = = o] o o

HHHH»—A»—AHM[\JMM.—-HHHML\JMHH»—A»—A»—A>—\.—nn—->—4r—n>—-r—A»—A|—AHHHHHM%.&.&A\]H\IM\]H

HHH»—A»—A)—*»—A»—*»—A»——A»—*H)—‘H»—AH»—A»—A»—J»—‘l—tb—lHHN[\D[\D»—AH)—AHH»—-A»—!H»—A»—AQOU!;&J:-SWMAN)UW)—\

Lol Rl Mt Ml el Il Mol ISl G S E I S I Y [ R B (R (NG IS () (S QSR (U U (UOTS FVEY UG UG U U [FUY (Y (Y Y (Y (PC




232 Roland Norcen and Andreas Uhl

Table 4. Standard stirmark testsetting, lena512: different wlev used for feature ex-
traction.

{ [ wlev9 | wlev8 | wlev? [ wlev6 | wlev [ wlev4 [ wlev3 ]
18 31 4 11

rotation_scale_-0.25 4
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rotation_scale_-0.75
rotation_scale_-1.00
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Whereas it is desirable from the point of view of the applications to
estimate the amount of difference between images by using those
hash functions, this property severely threatens security and facil-
itates “gradient attacks” by iteratively adjusting hostile attacks to
minimize a change in the hash value.

» A classical cryptographic hash function (like MD5 or SHA-1) is
applied to the feature data to result in an overall robust but cryp-
tographically secure robust visual hash procedure. The possibility
to measure the amount of difference between two hash strings is
lost in this case, however, gradient attacks and other security flaws
are avoided.

» The extracted feature values are used as hash strings as they are
without any further processing. The obvious disadvantages in
terms of the higher amount of hash bits and lower security against
attacks is compensated by the possibility to localize and approxi-
mately reconstruct detected image alterations since the hash string
contains data extracted from a low bitrate compressed version of
the original image.

In the latter case, with the available feature value data (consisting
of JPEG2000 packet body data), and the corresponding packet head-
ers which need to be generated and inserted into the codestream, the
original image can be reconstructed up to the point the codeblock data
is available in the packet bodies. A packet header indicates, among
other information, which codeblocks are included in the following packet
body, whereas the body contains the codeblocks of compressed data it-
self. Without the packet header, a reconstruction of the corresponding
packet body is not possible in general. Therefore, these packet headers
need to be inserted.

In Figures 5 and 6 we visualize the approximations of the original
images using feature value data of the lena and the graves image only.
In each case, the first 512, 1024, and 2048 bits of feature values are used.

Since the given number of feature value bits which are used for the
visual reconstruction include packet body data only, the overall number
of bits used for reconstruction — including the needed packet header
data — must be somewhat bigger. Table 5 shows the number of bits
which are required for the corresponding images. The first column gives
the number of feature bits used, and the entries in the table show the
overall number of bits which are needed for the visual reconstruction.
We see that a considerable number of “extra” bits are needed. These
“extra bits” stem from the corresponding packet headers and are needed
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to reconstruct the image data up to the point where codeblock packet

body data is given in the features.

Table 5. Signature bits (including packet header data).

I

‘ lenab12 l gravesH12 | planeb12 |

512 bits 552 552 552
1024 bits 1144 1136 1136
2048 bits 2224 2208 2224

(a) 512 bits

Figure 5.

(b) 1024 bits

(c) 2048 bits

Reconstruction of lena.

(a) 512 bits

Figure 6.

(b) 1024 bits

(c) 2048 bits

Reconstruction of graves.

The number of feature bits used have been chosen in a way to demon-
strate a possible application where the hash string could be signed using
a digital signature algorithm like ElGamal or RSA. In this context, using
a 512 feature bits signature already could help to localize and approxi-
mately reconstruct severely manipulated regions in the image, whereas a
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2048 feature bits signature allows to gain information about some details
as well.

5. Conclusion

The JPEG2000 algorithm can be employed to extract robust features
from an image. The presented method has shown to be robust against
moderate JPEG2000 and JPEG compression. In this work we showed
that the method is also very sensitive regarding global and local image
alterations including Stirmark attacks and different intentional local im-
age modifications. Application scenarios for our approach are discussed
and show this method to be of interest for practical employment.
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Abstract We present a multimedia content delivery system that preserves the end-to-end
authenticity of original content while allowing content adaptation by intermedi-
aries. Our system utilizes a novel multi-hop signature scheme using Merkle trees
that permits selective element removal and insertion. To permit secure element
insertion we introduce the notion of a placeholder. We propose a computation-
ally efficient scheme to instantiate placeholders based on the hash-sign-switch
paradigm using trapdoor hash functions. We developed a system prototype in
which the proposed signature scheme is implemented as an extension of the
W3C XML signature standard and is applied to content meta-data written in
XML. Evaluation results show that the proposed scheme improves scalability
and response time of protected adaptive content delivery systems by reducing
computational overhead for intermediaries to commit to the inserted clement by
95% compared to schemes that use conventional digital signatures.

Keywords:  Digital signatures, content adaptation, multimedia security

1. Introduction

The popularity of mobile internet services, such as NTT DoCoMo’s i-mode [1],
has dramatically increased the amount of content delivered to mobile devices.
The recent proliferation of third-generation (3G) mobile networks has not only
accelerated the increase but also made richer (i.e., bandwidth and CPU inten-
sive) multimedia content available to mobile devices. Due to various service
contexts or user preferences that mobile devices can signal to service providers,
coupled with the usual mobile device constraints (e.g., viewing time, battery
life, and display), content adaptation is expected to play an important role in
multimedia content delivery for mobile environments [2]. While such adap-
tation is useful, there is a cost. In particular, existing systems cannot han-
dle dynamic data adaptation while preserving end-to-end security. The IETF
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OPES working group pointed out security issues related to services deployed
at application-level network intermediaries [7]. The present paper addresses
integrity among the issues. Consider digital signatures - once data is signed,
subsequent modifications to it invalidate the signature. Our goal is to concur-
rently achieve multimedia content adaptation and end-to-end authenticity.

We assume a multimedia streaming system where meta-data specifying how
media components are handled is provided prior to actual content delivery.
Adaptation for such a system can be performed at the meta-data level and the
media-data level. For media-data adaption, one may apply transcoding tech-
niques such as multi-rate switching or scalable compression. For meta-data
adaptation, one may manipulate the composition of audio and video compo-
nents in the scene according to user preferences or service contexts.

Several works provide related but different features for adaptive content pro-
tection. Teranishi et al. propose an information sharing system with manage-
ment of content derivation [10]. The primary content provider in their system
(called the tier-1 provider here) manages content adaptation by binding usage
rules to the meta-data. Their system does not, however, protect content from
malicious corruption; instead, they assume that all modifications are performed
on trusted hosts. We, on the other hand, lift this assumption by employing, at
our cryptographic core, a novel multi-hop message signature scheme that en-
ables end-to-end authenticity of the usage rule and meta-data.

Our new signature scheme incorporates techniques from [22, 12] which per-
mit selective adaptive content removal. Merkle trees are used to create a mes-
sage digest, and deletions involve creating a small cover for the subset of re-
moved data items. Our contribution is to enable secure insertion of secondary
content by extending the Merkle hash tree based signature scheme to support
placeholders where the tier-2 provider can add its content. We propose a com-
putationally efficient scheme to accommodate the placeholder based on the
hash-sign-switch paradigm utilizing trapdoor hash functions [18].

In this paper we focus on the meta-data level signature scheme, although
media-data level signatures for streaming media has additional challenges such
as delay and scalability — see [4] for a discussion of such issues.

The paper is organized as follows. Section 2 discusses related work. Sec-
tion 3 explains the proposed system architecture. Section 4 describes the multi-
hop signature at our cryptographic core. Section 5 details the system prototype
we built and gives performance results. Section 6 makes concluding remarks.

2. Background and Related Work

Many content protection systems [5, 21] take an approach where a content au-
thor packages multimedia content with meta-data that contains usage rights
information regarding how the content should be used. However, these exist-
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ing systems presume content delivery with end-to-end consistency and thwart
malicious entities who wish to tamper with content or meta-data; thus they do
not permit tier-2 providers to perform adaptation.

The OPES (open pluggable edge services) working group [8] investigates
security threats and risks for services deployed at application-level intermedi-
aries, which are relevant to our adaptive content delivery system. In our sig-
nature scheme, we introduce placeholders in the Merkle hash tree to support
dynamic content insertion by tier-2 providers. Placeholders can be viewed
as indicators for OPES callout servers to identify the place for their content.
Amongst security threats, this paper addresses policy enforcement at interme-
diaries that are innately un-trusted by original content providers, and end-to-
end authentication of content. Other threats, such as denial of service attacks,
end-to-end encryption, are out of the scope of this paper.

To allow adaptation by intermediaries, an information sharing system that
enables tier-1 content providers to manage derivative works is proposed in
[10]. They define a language for providers to write content usage rules that ex-
press the restrictions imposed on derivative works. Modifications are checked
against the rules to detect malicious behavior. Their system does not, how-
ever, protect content and usage rules from malicious corruption; instead, they
assume all modifications are performed on frusted hosts, and the content and
usage rules never leave a trusted domain. Although one may argue the assump-
tion can be lifted using a conventional signature scheme, the solution assumes
that the tier-1 provider trusts tier-2 providers to sign content and usage rules
on its behalf. Another solution is that the tier-1 provider sends a signed con-
tent with callout indicators that locate content to be inserted. This requires
tier-2 providers to register content pointers which they cannot change after the
original content is signed.

We alleviate these assumptions by using a novel multi-hop message signa-
ture scheme that enables end-to-end authenticity even with content-adapting
tier-2 providers. Such trust alleviation enables various service scenarios where
tier-2 providers are not trusted entities. For example, it enables personal users
to legitimately use commercial music clips to create personal video clips, and
distribute them subject to usage policies of original content.

3. Proposed System Architecture

Figure 1 illustrates the basic architecture of our adaptive multimedia content
delivery system. It supports both meta-data and media-data content adapta-
tion. The tier-1 provider (T1) creates media files which constitute multimedia
content and generates meta-data containing information on how to access the
media files and how to compose them. Meta-data is delivered to user devices
through tier-2 providers (T»). The actual media files are stored in media servers
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Figure 1. Basic architecture of adaptive content delivery system which supports two-level
adaptation: meta-data level and media-data level.

and are delivered to user devices by downloading or streaming. These media
servers may be operated by T, T, or other third-party providers. T, may
perform adaption on meta-data elements. Each element represents an actual
media file; T inserts/deletes a media file to/from a composition by manipulat-
ing meta-data without touching the internal content of the files. Examples of
such adaptation are dynamic insertion of (targeted) advertisements or remov-
ing elements to create a digest.

We assume weak trust between T1 and Ty. T acquires from Ty the right to
create and re-distribute content derived from the primary content, subject to us-
age rules specified by T1. We envision that their relationship is as loose as that
between an e-commerce site and consumers. T1 may have no reason to trust
T», and presumes it might try to perform illegal modifications on the content
and usage rules. Further, T does not trust other tier-2 providers or end-users,
and assumes they may try to "remove" To’s adaptation (e.g., delete its adver-
tisements). We do, however, assume that a trusted end-user media player; e.g.,
it uses attestation to a trusted platform or a tamper-resistance mechanism (with
the usual caveat that such measures can often be circumvented by highly de-
termined adversaries). If the media player detects usage rule violations it takes
the appropriate action; e.g., prohibits the client from downloading necessary
media files. To realize secure adaptive content delivery under these assump-
tions, we need a signature scheme with the following properties:

1 T, can delete or insert elements from/to meta-data subject to the usage
rule specified by Ty. Rule violation must be detected by the verifier.

2 T; can insert additional elements only at positions specified by T;. The
verifier can detect insertions to an un-designated position.

3 Once T, commits to the element it inserts, the element cannot be altered
or deleted without detection by verifiers. (As in any signature scheme,
what happens after malicious behavior is detected is orthogonal.)

The “commitment” above does not bind T, to a particular element; instead it
forms a secure placeholder into which content can be dynamically inserted.
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Figure 2. Placeholder request procedure between tier-1 & tier-2 providers; the tier-2 provider
sends a request with placeholder information to purchase space.

The next section describes a scheme that achieves these properties. The
scheme uses Merkle trees and achieves the first property by binding a hash of
the usage rules to the Merkle root prior to signing. The verifier checks both
rule compliancy of the modification and signature validation. To realize ir-
reversible inserts, the scheme introduces an extension, called a placeholder,
which specifies a position in the meta-data into which a designated entity can
insert an additional meta-data element. The placeholder contains information
that uniquely identifies the entity who will insert data. After the placeholder is
set to the meta-data, T constructs its hash tree and signs the root. Before it
signs the meta-data, T must obtain T5’s information for inclusion in the place-
holder. This can happen via a directory service or by using a placeholder re-
quest procedure between T and To. We adopt the second approach, imagining
a scenario where T purchases advertisement space by sending a placeholder
request message (see Figure 2). Upon receipt of the signed meta-data, T se-
curely inserts an element (e.g., advertisement) to the assigned placeholder.

Although our focus is meta-data adaptation and protection, our system can
incorporate the authenticated media-level adaption techniques proposed by
Gentry et al. [4] which permit transcoding of the media content itself while
preserving end-to-end authenticity.

4. Proposed Signature Scheme

We propose signature schemes that allow one or more T3s to modify original
content by dynamically deleting or inserting elements (subject to T1’s pol-
icy), while preserving a receiver’s signature verification ability. We first de-
scribe Merkle trees and how they permit dynamic deletion. We then introduce
placeholders, which allow for dynamic insertion; our main scheme instanti-
ates placeholders using trapdoor hash functions at select Merkle tree leaves.
Finally, we discuss two mechanisms that make content insertion irreversible.
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Model and Notation. Let S denote the sender or T1 who creates and signs
the original data and let R denote the receiver who verifies the signature. The
data may pass through a proxy P such as T». Our schemes extend to multiple
proxies, but for simplicity, we only consider the case of one P. P may insert
content or remove portions of the data. It further determines what information,
if any, R requires to verify the signature. We implicitly assume S # P, but our
schemes work when they are the same. We assume the existence of an open
or closed public-key infrastructure where S has key pair (Pk, Sk). Here Sk is
S’s private key for computing a traditional signature on a message, and Pk is
the public verification key. Sign(Sk, M) denotes an algorithm that outputs a
signature o on message M under signing key Sk and Vf(Pk, M, o) denotes
the verification algorithm. P need not know Pk or Sk. Our schemes may also
work with a message authentication code or MAC, in which case both S and
‘R share knowledge of a symmetric key (which P need not know).

Let {0, 1}* denote the set of all bit strings. Let M denote the initial con-
tent that can be broken up into n blocks which may have different lengths:
M = MMy My, M; € {0,1}*,1 < ¢ < n. Where convenient, we assume
n is a power of 2. In our scheme, the intermediary may choose to either keep
or remove an entire block, but he cannot perform transformations involving a
portion of a block. Let H denote a cryptographic hash function that takes as
input a string in {0, 1}* and a (fixed and publicly known) v-bit initialization
vector (IV), and produces a v-bit output. We assume these cryptographic hash
functions are collision resistant; i.e., finding two inputs m; # myq such that
H(V,my1) = H(IV,mg) is difficult. A practical example of such a crypto-
graphic hash function is SHA-1 [15] which has a 20-byte output and 1V,

Merkle Trees, Signing, and Deletion. The Merkle tree associated with M is
a balanced binary tree in which each node v is assigned a value V(v) ~ we
often refer to v and V(v) interchangeably. There are n leaves, and for each
leaf ¢;, V(4;) = H(IV,M;), 1 < i < n. For an interior vertex v, V(v) =
H(V, V(Co(v)) o V(Ci(v))), where Co(v) and Cy(v) are v’s left and right
children respectively, and o denotes concatenation. To sign M, the content
creator computes the root value 7 of the Merkle tree associated with M. The
signature is o = Sign(Sk, ). Deletion is supported by supplying a modicum
of extra verification data so that the verifier can still compute the root of the
Merkle tree, as we now describe. First, let M’ denote the transformed data
after the removal of blocks. The intermediary does the following:
1 Let S = {(£] ¢is aleaf of a block to dropped.}
2 If there exist u,v € S such that u, v are siblings in the tree, then set
S =8 —{u,v} U {w}, where w is the parent of u, v. Repeat this until
S has no siblings. Suppose that at theend S = {w; | 1 <i < p}.
3 Let py = V(wy) for 1 <4 < p. P transmits M’, o, ;, and the tree node
position for each w;, 1 <14 < p.
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Verification. R verifies the signature as follows:

I For each received message block M;, , compute y, = H(IV, M;, ).

2 Consider the set of all hash values computed in the previous step as well
the hash values (1, ..., u,. If any pair correspond to siblings, replace
the pair with their hash (which corresponds to their Merkle tree parent).
Repeat this step until only one value remains — call it 7.

3 Run Vf(Pk, 7', o).

We show that ' = r, from which it is easy to see why the above algorithm
works. If one has all the initial blocks, then the above procedure is the standard
algorithm for computing the Merkle tree root. Now, observe that whenever R
receives some hashes yiq, ..., ), these come from 7P running the same algo-
rithm on the subset of missing frames. Therefore, P and R have together run
the algorithm on all n blocks which yields the Merkle root value.

Insertion via Placeholders. We propose the CS and HSS schemes for realizing
placeholders. The former uses conventional public-key signatures (e.g., RSA)
and the latter uses the hash-sign-switch [13] technique. The CS scheme is
fairly trivial. S places P’s public key (or instructions on where to retrieve
it) in the placeholder block. S then creates a Merkle-tree digest and signs as
described above. P, in turn, attaches its content and signs it separately. R
checks the validity of both signatures. This approach is less efficient than the
HSS scheme which we now proceed to describe.

HSS Scheme. Trapdoor hash functions Hy (m, r) consist of a public key Y and
a trapdoor X; they take two arguments and have following properties:

» If X is unknown, there is no efficient algorithm that finds pairs (mq,71)
and (mg, re) such that Hy (mq1,7m1) = Hy(me,r2), but my # meo, ex-
cept with negligible probability:.

m If X is known, there is an efficient algorithm that given mq, mo, 1 with
mi # meg, finds 72 such that Hy (mq,71) = Hy (ma,r2).

One can construct such trapdoor hash functions based on the discrete loga-
rithm assumption (DLA) as follows (see [18] for details). Let p, g be primes
such that g|p — 1, and let g be an element of order g in Z,, ~ parameters are
global. The trapdoor is a value  chosen (randomly) from Z;. The public key is
y = g* mod p. Now, we define Hy(m,r) = ¢g"y", which can be computed by
anyone. However, for any given m1, my, r1 € Zg, knowledge of the trapdoor is
required to efficiently compute an ro € Z such that I (my, 1) = Hy(mg,72)
by setting 7o = (m1 — mg)z~! + r1. To create a placeholder, P sets up a
trapdoor hash function and hashes random values, m/, v': TH = Hy (m/,7").
It sends T'H and Y to S. S treats the received parameters as a message block,
and signs everything using the above hash tree technique. To insert content
m, P uses x to compute r such that Hy (m,r) = T H. These values together
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with the original signature are sent to R. In turn, R verifies the original sig-
nature using T H as a placeholder, and then determines placeholder validity by
checking if Hy (m,r) =TH.

Comparison. HSS is more efficient than CS for P. Assuming the DLA imple-
mentation, HSS requires one modular multiplication. CS using 1024-bit RSA
keys requires a full-length exponentiation, which involves about 1500 modular
multiplications on average. Also, in HSS, P need not rebuild the hash tree
after adding data, but merely attaches the commitment value r to the original
signature. R need only rebuild the hash tree to verify the original signature
and hash. In CS, however, P must re-build the hash tree since malicious enti-
ties can replace the added data with any data previously signed by P. R must
rebuild two hash trees from the meta-data with and without the added data. A
drawback of the DLA based HSS is that placeholders can only be used once,
otherwise x leaks by solving simultaneous equations. A simple modification
enables us to use placeholders k times. We generate k public keys {y; =
g% (modp) : 1 < i < k} and compute hash value TH = g™y} (modp). To
use the i*" message m;, P computes r; = (m’ + 'z — mi)wi_l mod qg. R
checks that g"y;* = T'H. The CS placeholder has unlimited reuse.

Preventing Removal. We should also prevent malicious deletion of T3’s in-
serted content by those who, say, do not want to see advertisements. There are
two approaches — each of which is compatible with both HSS and CS. In the
first approach, P signs each of its placeholders regardless of whether it wishes
to insert content into the corresponding slot. Then, any placeholder without
a corresponding signature constitutes evidence that P’s content was illegiti-
mately deleted. Since only P can produce signatures corresponding to its own
public key (which is embedded in the Merkle tree generated by S), no other
parties can remove or modify P’s inserted content without detection.

The second approach, which we have not yet implemented, uses aggregate
signatures [19], which is a single signature that convinces any verifier that
signer .S; signed message M;, 1 < i < n, for distinct signers and messages.
One advantage of aggregate signatures is compactness; ideally, the size of the
aggregate signature does not grow at all as n increases. Here, we use a dif-
ferent property of certain aggregate signatures: when two entities (e.g., Ty and
T») aggregate their respective signatures, it is impossible for a third party (e.g.,
a second tier-2 provider or a receiver) to separate or "disaggregate" the signa-
tures. Using this property, T2 can ensure that its insertion cannot be removed
without detection by aggregating its signature on its insertion with T1’s signa-
ture on its content. Then, any deletion of Ty’s content will be detected by a
receiver that attempts to verify the authenticity of T1’s content.

As an example, we consider the BGLS aggregate signature scheme [19],
which uses a function e : G x G; — Gy called a "pairing”, that maps two
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elements of an elliptic curve group (or abelian varieties group) G to a second
group Go. (See [19] for details.) We assume that all users of the aggregate
signature scheme share certain parameters, such as a point P of order ¢ on the
elliptic curve, a hash function H : {0,1}* — Gy, and a public key s; P. Sim-
ilarly, T2 has key pair (s2, s2P). Let M; denote T1’s content (including, of
course, the placeholder for T»), and let My denote T2’s content. T; computes
its signature on M7 as s1 Py, , where Py, = H{s1P, My); the tier-2 provider
similarly computes its signature on My as sg Pyy,, Where Pyy, = H (s P, Ma).
The aggregate signature is Sogq = 10, + 521, and it is verified by con-
firming that e(Sagq, P) = e(Pp,, s1P)e(Pu,, s2P). It is impossible (even
information theoretically) to recover s1 Py, or s3Ppz, from Sggq.

To prevent the removal of T5’s inserted content, T1’s original signature (i.e.,
s1Pps,) must be sent to T, over a secure channel; otherwise, anyone can re-
place the aggregate signature with T’s non-aggregated signature. When com-
bining this scheme with HSS, T; generates random values for m' and 7/, and
computes TH = Hy(m/',r’) as usual. It then generates and stores the tenta-
tive signature soPrp, where Pry = H(se P, TH). To sign My, T transmits
the 7 corresponding to M, and aggregates soPry with To’s signature. If To
does not wish to insert content at a placeholder, it need not sign.

Under this approach P’s signature is shorter. The user’s verification time is
proportional to the number of used placeholders as opposed to the total number
allocated. However, verification time may be greater since computing a pair-
ing takes, as a rule-of-thumb, about the same time as five full-length 1024-bit
modular exponentiations.

Security Analysis. Our formal security analysis requires three standard as-
sumptions: the scheme used to sign the Merkle root resists existential forg-
eries under adaptive chosen message attack in the sense of [20}; H is collision-
resistant; and the trapdoor hash function is collision resistant (if the trapdoor is
unknown). The last assumption can, in turn, be based on the discrete logarithm
assumption. We can theoretically base H on this assumption as well, though in
practice we use SHA-1. The underlying reductions are tight in a concrete se-
curity sense. The proof is straightforward and combines techniques from [22]
(to address secure removal) and [13] (to address secure insertion).

S. Implementation and Evaluation Results

We built a prototype of our adaptive content delivery system with the proposed
signature schemes in Java. We used SMIL [11] for meta-data specifying the
composition of media files, and XACML [16] to write usage policies restricting
adaptation to the original SMIL file. We adopted XML digital signatures as a
basis of our signature scheme for meta-data, and implemented an extension to
support Merkle hash trees with placeholders.
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Signatures. Figure 3 shows a (simplified) example SMIL document before and
after signing. The document includes a placeholder for video with an iden-
tifier (phid) of 1. The Signature element is written in XML-DSIG with two
extensions: a new hash algorithm identifier, HashTreeConstruction (for the
Merkle tree) and a new element, TrapdoorHashMethod (for trapdoor hash
function parameters). The policy element specifies allow/deny rules of add and
delete operations for each element under the SMIL element. The add operation
rule specifies the placeholder identifier and attributes with which the inserted
data must comply. The Policy element is bound with the SMIL elements by in-
cluding its hash value in the Signature element. T» sends a SOAP placeholder
request message containing the identifer and parameters associated with the
placeholder. T; copies the parameters from the message to the PublicValue

element and the TrapdoorHashValue before calculating the signature.

<?xml version="1.0"%>
<smil>
<head/>
<body>
<seq>
<par>
<video ste="rtsp//tyer-1/videol.tm"/>
<video ste="rtsp//tyer-1/musicl.mm"/>
<fpar>
<par>
<video phid="1"/>
</par>
</seq>
</body>
</smibt>

(a) Before signed

<Signature>
<SignedInfo>
<CanonicalizationMethod/>
<SignatureMethod/>
<Reference URI=/DocumentRoot/Policy />
<Reference URI=/DocumentRoot/smil/head />
<Reference URI=/DocumentRootsmil/body />
<TrapdoortashMethod Algorithm=
“Discrete Log” phid="1"5
</Signedinfo>
<SignatureValue/>
<AdditiveSignature phid="1">
<CommitmentValue>
Commitment_Value_of_TrapdoorHash
</CommitmentValue>
</AdditiveSignature>
</Signature>

<Txml version="1.0""?>
<DocumentRoot>
<Policy/>
<smil/>
<Signature>
<SignedInfo>
<CanonicalizationMethod/>
<SignatureMethod/>
<Reference URI=/DocumentRoot/Policy />
<Reference URI=/DocumentRoot/smilhead />
<Reference URI=/DocumentRoot/smil/body>
<DigestMethod Algorithm=‘HashTreeConstruction’/>
<DigestValue> root_node_of_hash_tree </DigestValue>
</Reference>
<TrapdoorHashMethod Algorithm=“Discrete Log” phid=*1">
<PublicValue> public_values_of_trapdoor_hash </PublicValue>
<TrapdoorHashValue> trapdoor_hash_value
</TrapdoorHashValue>
</TrapdoorHashMethod>
</Signedlnfo>
<SignatureValue> Signature </SignatureValue>
</Signature>
</DocumentRoot>

(b) After signed (Bold: extended part)

(d) After commitment

Figure 3.
committment.

<smib>
<head/>
<body> <seq>
<par>
<video src="rtsp://tyer-1/videol.rm"/>
<video adaptation="delete"/>
</par>
<par> <video phid="1" src="rtsp://tyer-2/xxx.nm" adaptation="add"/>
</par>
</seq> </body>
<fsmib>

(c) After transformed

SMIL documents (a) before, (b) after signing, (c) after transformation, and (d) after

Adaptation. T, modifies the signed SMIL document subject to the Policy el-
ement restrictions. The transformed meta-data is checked against the Policy
Element restrictions. If the result is "allow", the added element’s commit-
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ment value is calculated and set to the element ArgValue under the element
AdditiveSignature element. Otherwise, we interrupt the process.

Verification. The user device verification module is implemented as an HTTP
proxy which evaluates a signed document and outputs a SMIL document that
can be handled by existing SMIL players such as RealOne [6]. There are three
steps in the verification process: signature validation, policy compliance check
(identical to what is in the adaptation module), and transformation. The signa-
ture validation step reconstructs the hash tree from the leaves to the root. If an
element contains an adaptation attribute of "add", it fetches the hash value from
the corresponding TrapdoorHashMethod element with the same phid. After
hash tree reconstruction, the value in the SignatureValue element is vali-
dated. Commitment value for the added element is validated separately. The
trapdoor hash value is computed using the added data and the commitment
value, and compared with the trapdoor hash value in the Signature element. If
the signature is valid, the adaptation by T, is checked against the restrictions
in the Policy element. The policy compliancy check step in the adaptation pro-
cess is reused here. If the check succeeds, the signed document is transformed
to a standard SMIL format by deleting system-specific elements and attributes.
If any of the above steps fails, the verification module sends an error message
to the SMIL player and terminates.

Performance. Modules in T, are implemented on a 3.06 GHz Pentium 4 ma-
chines with 1 GB memory running Redhat Linux 2.4.20. The user device
modules are implemented on an 866MHz Pentium III machine with 512 MB
memory running Windows XP. Our experiments used 1024-bit DSA-SHAT in
XML-DSIG for both the Hash-Sign-Switch (HSS) and Conventional Signa-
ture (CS) schemes. For HSS, the trapdoor hash function also uses a 1024-bit
modulus. All results are computed by averaging 10 trials.

Figure 4 shows processing delay in msec of each step in Ty (left) and the
user devices (right). In the figure, "XML-DSIG", "XML-DSIG (hash tree)",
"One delete", "One add (Conv.)", and "One add (Trapdoor)" mean processing
delay to handle a SMIL document with XML-DSIG, XML-DSIG with hash
tree extension but without adaptation, one delete operation, one add operation
using CS, and one add operation using HSS, respectively. The SMIL document
included 5 leaf elements. In T,, commitment using CS was implemented us-
ing the existing XML-DSIG implementation and took about 439msec for one
added element. On the other hand, commitment using HSS took only about
23 msec for the same added element. This commitment step includes insertion
of the commitment value to the Signature element. The processing delay of
adaptation and the policy compliance check took about 1 1msec and 10msec re-
spectively, rather insignificant compared to commitments implemented using
CS. In the user device, signature verification using the existing XML-DSIG
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Figure 4.  Processing delay in msec of each step in T (left) and the user devices (right).

implementation [9] took 282 msec in our setting. In case of using hash tree
construction, the verification delay increased by 52%. The processing delay of
the policy check was 38 msec, three times longer than that in T, because of
lower CPU power. Verification of the commitment using HSS required about
32% more overhead than the commitment using CS.

We see that HSS reduces computational overhead for T, to commit to the
element added to the original meta-data by 95% (400 msec in our setting). Al-
though this improvement comes at the cost of increased verification overhead
on the user device by 32% (70 msec), total end-to-end overhead is reduced by
30% (315 msec). This indicates that the HSS scheme improves scalability and
response time of secure adaptive content delivery systems.

6. Conclusions

We presented a protection system for adaptive multimedia content delivery that
preserves end-to-end authenticity while allowing content adaptation by inter-
mediaries. We proposed a new multi-hop digital signature scheme, and used
it to protect content meta-data and usage rules from illegal modifications. The
proposed signature scheme uses Merkle hash trees to allow selective element
removal, and achieves secure element insertion by adding a placeholder ex-
tension. We also suggested a computationally efficient scheme to instantiate
the placeholder based on the hash-sign-switch paradigm using trapdoor hash
functions. The proposed scheme can alleviate the trust level from T to tier-2
providers; otherwise T1 must have complete trust in them not to perform il-
legal modifications. We envision that this trust alleviation will give flexibility
to secure adaptive content delivery services. The evaluation results using our
prototype showed that HSS can reduce signature-related overhead in the tier-2
provider (commitment) and end-to-end (signature, commitment, and verifica-
tion) by 95% and 30% respectively, compared to CS. The proposed signature
scheme, thus, contributes to improvement of scalability and response time of
adaptive content delivery systems with the content protection scheme.



A System for End-to-End Authentication of Adaptive Multimedia Content 249

References

[1] NTT DoCoMo i-mode. http://www.nttdocomo.com/corebiz/imode.

[2] M. Etoh and S. Sekiguchi. MPEG-7 enabled digest video streaming over 3G mobile net-
work. 12th International Packet Video Workshop (PV2002), Apr *02.

[3] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. Journal
of the ACM, vol. 33, no. 4, 1986, pp 210-217.

[4] C. Gentry, A. Hevia, R. Jain, T. Kawahara, and Z. Ramzan. End-to-End Security in the
Presence of Intelligent Data Adapting Proxies: the Case of Authenticating Transcoded
Streaming Media. To Appear in J. Selected Areas of Communication, Q1, 2005.

[5] Microsoft Windows Media 9 Series. http://www.microsoft.com/windows.

[6] Real Networks. RealOne player. http://www.realnetworks.com.

[7] IETF RFC 3238. http://www.ietf.org/rfc/rfc3238.txt.

[8] IETF  Open Pluggable Edge Services (OPES) Working Group.
http://www.ietf.org/html.charters/opes-charter.html.

[9] 1BM alphaWorks XML Security Suite. http://www.alphaworks.ibm.com/tech/.

[10] T. Yuuichi, T. Kaori, O. Takeshi, S. Shinji, and M. Hideo. ASIA: Information Sharing
System with Derived Content Restriction Management. /EICE Transactions on Communi-
cations (Japanese Edition), vol. 428, pp 1463-1475, Aug ’03.

[11] W3C Recommendation. Synchronized Multimedia Integration Language (SMIL 2.0).
http://www.w3.org/TR/smil20. Aug 0l.

[12] R. Johnson, D. Molnar, D. Song, and D. Wagner. Homomorphic signature schemes. C7-
RSA, Lecture Notes in Computer Science, vol. 2271, pp 244-262, 2002.

[13] A. Shamir and Y. Tauman. Improved Online/Offline Signature Schemes. Proc. of Crypto
2001, pp 355-367.

[14] W3C Recommendation. XML-Signature Syntax and Processing.
http://www.w3.org/TR/xmldsig-core. Feb 02.

[15] National Institute of Standards and Technology, U.S. Department of Commerce. Secure
Hash Standard. Federal Information Processing Standards Publication 180-1, Apr. 1995.

[16] OASIS Committee. eXtensible Access Control Markup Language v1.0.
http://www.oasis-open.org. Feb ’03.

[17] R. Merkle. Protocols for Public Key Cryptosystems. Proc. of the IEEE Symposium on
Security and Privacy, pp 122-134, 1980.

[18] H. Krawczyk and T. Rabin. Chameleon Hashing and Signature. Proc. of NDSS "2000.

[19] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted sig-
natures from bilinear maps. Proc. of Eurocrypt *03. LNCS 2656, pp. 416-432.

[20] S. Goldwasser, S. Micali, and R. L. Rivest. A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM Journal on Computing. 17(2), pp281-308, 1988.

[21] OMA. DRM2.0 Enabler Release. http://www.openmobilealliance.org. Feb 04,

[22] R. Steinfeld, L. Bull and Y. Zheng. Content Extraction Signatures. Proc. of ICISC 2001.
LNCS, vol.2288, pp.285-304.

[23] W3C Recommendation. SOAP v1.2. http://www.w3.org/TR/SOAP. June *03.

[24] W3C Recommendation. XSL Transformations v1.0. http://www.w3.org/TR/xslt.
Nov ’99.



USING SAML TO LINK THE GLOBUS TOOLKIT
TO THE PERMIS AUTHORISATION
INFRASTRUCTURE

David Chadwick', Sassa Otenko', Von Welch?

TSI, University of Salford, Salford, M5 4WT, England.

*National Center for Supercomputing Applications, University of llinois, 605 E. Springfield,
Champaign, IL 61820, USA

Abstract: In this article the new trend in authorisation decision making will be described,
using the Security Assertions Mark up Language (SAML). We then present an
overview of the Globus Toolkit (GT), used in Grid computing environments,
and highlight its authorisation requirements. We then introduce the PERMIS
authorisation infrastructure and describe how it has been adapted to support
SAML .so that it can be deployed to make authorisation decisions for
GTversion 3.3.
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1. INTRODUCTION

The Security Assertions Markup Language (SAML) [1] has been
designed by the Organization for the Advancement of Structured Information
Standards (OASIS) to provide a universal mechanism for conveying security-
related information between the various parts of an access control system. It
is an XML-based language for encoding security request and response
messages between the initiator of an access request, the authentication
service, the authoriser (termed an attribute authority) and the access control
decision function (ADF). Some of these parts of an access control system
may be grouped together, in which case they will not need to send SAML
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messages between themselves, and may use some sort of API to convey the
necessary information between each other.

The Globus Toolkit (GT) is an implementation of Grid software, which
has a number of tools that make development and deployment of Grid
Services easier [2]. One of the key features of this toolkit is secure
communications. However, Globus Toolkit has limited authorisation
capabilities based on simple access control lists. To improve its authorization
capabilities a SAML authorisation callout has been added. The important
consequence of this is that it will be possible to deploy an authorisation
service that the GT will contact to make authorisation decisions about what
methods can be executed by a given client. One such authorisation service is
PERMIS [3]. Whilst the original PERMIS Java API was intended for local
calls only, and didn’t have any network interface, a PERMIS Authorisation
Service has been developed to provide authorisation decisions for the Globus
Toolkit through the SAML callout.

2. OVERVIEW OF EXISTING TECHNOLOGY

2.1 SAML

SAML is a language for expressing security-related information. It
defines message formats in XML for Queries and Responses. It also defines
a request-response protocol in SOAP over Http for carrying the SAML
messages. SAML Queries are sent to a decision-making service whilst
Responses, in the form of SAML Assertions, are returned. These assertions
can then be coupled with a further Query and sent to other decision making
services to aid them in their own decisions. In the SAML model there are
three decision-making services: the Authentication decision-making service,
the Attribute decision-making service and the Authorisation decision-making
service (see Figure 1). Each decision-making service uses its associated
policy and the user’s credentials to evaluate the Query. After the SAML
Query has been evaluated, a SAML Response is generated and this may be
forwarded to another decision-making service, until it finally reaches the
Policy Enforcement Point (PEP) of the application, which will determine the
ultimate fate of the user’s application request. The PEP is equivalent to the
Access control Enforcement Function (AEF) in ISO 10181-3 Authorisation
Framework [4].

SAML does not mandate any exact sequence of message flows for access
control decision making. However, a typical flow might be as follows. A
user’s access request is presented to a PEP/AEF, and comprises the user’s
name, the user’s credentials, the target to be accessed and the requested
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mode of access. The PEP could then sequentially present portions of this
request to the three decision-making services. Firstly the user’s name and
credentials are presented to the Authentication Authority, which confirms
the identity of the user. Next the authenticated name of the user (or the
authentication assertion returned by the Authentication Authority) is
presented to the Attribute Authority, which confirms the assignment of
certain attributes to the user. Finally the attribute assertions, the name of the
target and the requested mode of access are presented to the PDP, which
makes an access control decision. The PEP then acts on this decision and
either forwards the user’s request to the target (if the PDP granted the
request) or returns an error message to the user (if the PDP denied the
request).

User’s
Request &
Credentials
-
Authentication
Authority
Attribute ——
Authority
Policy Decision e
Point
vy (Authorisation
Policy Authority)
Enforcement
Point
Target
Resource

Figure 1. SAML

The SAML messages can be digitally signed, which makes them
tamperproof, i.e. the messages can be sent as plaintext across untrusted
networks. Alternatively, the SAML protocol messages could be sent as
SOAP over Http over SSL, which can also protect them from eavesdropping.

Until quite recently most uses of SAML were limited to authentication
and attribute usage e.g. as in Shibboleth [5]. Authorisation decisions were
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usually made locally either based on the user’s identity (in Access Control
Lists) or on the attributes/roles of the user (in simple scripts).

As virtual communities and Grid computing started to develop, identity-
based systems for authorization became increasingly difficult to manage due
to the distributed nature of the user communities. To accommodate these
communities, new authorisation systems were required that would make the
decisions based on the attributes of the initiator rather than their identity.
Another prerequisite for SAML authorisation messaging was that there
should be a centralised decision-making point for a number of remote
services, governed by the same policy. Thus Community Authorisation
Server (CAS) [6], Akenti [7], PERMIS and others started to appear.

2.2 The Globus toolkit

The Globus Toolkit (GT) is a set of tools for building Grids that includes
tools for resource discovery, job submission and data movement. Version 3
of the Globus Toolkit (GT3), includes support for Grid Services based on the
Open Grid Service Infrastructure (OGSI) standard, which defines extensions
to Web Services for lifetime management and stateful instances (among
other things outside the scope of this paper). GT3 provides a Grid Service
Container to host Grid Services instances, which provides services such as
message marshalling/de-marshalling, authentication and authorization.

A virtual organization (VO) is a collection of users and resources,
distributed across a number of geographic and administrative domains,
which share common policies for access control. Initially access control was
solved in GT through the use of simple access control lists called grid-map
files, which performed mapping of access rights based on the user’s identity.
Such simplistic policies were robust, but failed to scale as the VOs grew in
size and spanned larger numbers of institutions. To provide more flexible
authorisation solutions, it was decided to provide a SAML authorisation
callout in GT3 to allow the use of advanced authorization services. The
effect of this is that the Grid Service Container would be able to contact the
centralised Policy Decision Point to make access control decisions for
invocations of services it hosts. In this design the PDP becomes yet another
Grid Service, which provides authorization decisions through a standard
message format i.e. SAML.

Now it is possible to create a CAS, Akenti, or PERMIS port that would
make access control decisions for Grid Services, based on queries and
decisions in the form of SAML Queries and Responses which are enforced
by the Grid Service Container. A detailed description of the operation
scenario is given later, with the example related to PERMIS.
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23 PERMIS

PERMIS is a policy based authorisation infrastructure, in which a user is
granted rights to access a resource based on the authorisation policy for the
resource, and the set of attributes (or roles) that the user possesses. A user’s
attributes are stored in digitally signed X.509 attribute certificates [10], and are
allocated by the authorities in charge of the various attributes. Thus a “doctor”
role attribute could be allocated by the General Medical Council, whilst a
“project manager” role attribute could be allocated by the head of a department.
A “date of birth” attribute could be allocated by a national registrar. These
attribute certificates are then stored in various LDAP directories.

PERMIS was designed with a Java API between the PDP and PEP providing
the access control decisions. Given the name of the user, it retrieves the user’s
attributes/roles and makes decisions based on them. The authorisation policy,
written in XML, expresses which users can be assigned what attributes/roles by
whom, and what privileges are bound to each of the attributes/roles. The XML
policy is then inserted in an X.509 attribute certificate, signed by the manager
who wrote it, and stored in an entry in an LDAP server.

When an application starts up, its PEP/AEF passes to the PERMIS ADF/PDP
the name of the manager, the location of the LDAP directory, and the unique
number of the policy to be used (each policy is assigned a globally unique
number — actually an object identifier [12] — so that a manager can create
different policies to be used in different contexts). The PERMIS ADF retrieves
the policy X.509 AC from the LDAP directory, checks the signature and policy
number, and if both are correct, uses this policy for its decision making.

3. THE IMPLEMENTATION

3.1 Extensions to SAML

A standard SAML Response contains a complete list of all the allowed
actions which were contained in the SAML Query. While this is useful in
cases where the response is passed to a third party, in the case where the
query was generated by the consumer of the response it can introduce
unnecessary overhead. In these cases the consumer of the response must
parse the entire list of actions, when it may only be interested in a "yes" or
"no" answer regarding the entire list as a whole.

For the sake of performance, new SAML Requests and Responses have
been proposed — they are shorter and more concise versions of the standard
SAML Authorization Decision Request and Authorization Decision
Statement (passed inside a SAML Query and SAML Response respectively).
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These new messages allow the query to request, and the decision to contain,
a simple yes/no response to all the actions contained in the query. This
allows the authorization service to easily encode, and the Grid Service
Container to easy parse, the response. The specification of these new SAML
messages has been written by the Global Grid Forum’s (GGF) Open Grid
Service Architecture Authorisation working group (OGSA-AuthZ) [9].

3.2 Extensions to PERMIS

As the demand for an authorisation service appeared in the Globus
Toolkit, the PERMIS researchers closely collaborated with the GT team to
provide practical input into the design of the SAML messages to be used in
GT3. In parallel a standalone PERMIS ADF was developed. Whilst the
original PERMIS RBAC ADF had to be contacted via its Java API, the
standalone ADF has a networking interface, through which it can receive
SAML Queries and send back SAML Responses. In addition to this, the
PERMIS ADF can pose as a Grid Service, so it can be used as a centralised
PDP of a Grid application. It can also easily be embedded as a Service
Authorisation — i.e. a PERMIS Authorisation “Callout” can replace the GT3
standard SAML Authorization Callout, and make local decisions for local
Grid Services.

The original PERMIS architecture supported only LDAP Distinguished
Names as Target identifiers. This allowed PERMIS to group targets into
domains for easier expression of the policy. It was noticed during the early
development stages of PERMIS that in fact people use various kinds of
naming conventions for identifying targets, e.g. IP addresses, DNS names,
URIs etc., so the design of the PERMIS API incorporated Principals, as an
abstraction for such identifiers. However, the original PERMIS pilot sites
did not have any specific requirements about which type of naming to use,
and so for consistency purposes target naming was chosen to be the same as
subject naming. Since subjects were named using X.500/LDAP
distinguished names, then so too were targets.

When porting the code to work with the Globus Toolkit, it became
necessary to allow other kinds of naming conventions to be used for targets,
specifically because in Globus the intended targets are Grid Services, and
they already have non-LDAP identifiers in the form of Grid Service Handles
(GSHs), encoded in the form of a URIL. URIs are hierarchical names like
LDAP DNs, and this helps to group targets into domains (although of course
in any particular Grid application the relevant targets at different sites may
have totally unrelated URIs). URIs do not provide any further refinements
for targets, unlike LDAP, which provides Object Classes to help to further
distinguish between the different kinds of target e.g. printers or cpu clusters.
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This is one example of identifying targets by their attributes as well as or
instead of their names.

Besides changing the ADF interface to support URI target names, the
PERMIS policy syntax also had to be extended to support URIs as Target
Identifiers'. This allows the manager to specify target names as URIs.

The PERMIS ADF assumes the subjects are authenticated, but it can
recognise unauthenticated subjects, and now it will return public access
rights to such subject names, i.e. it will grant access lo the targets that do not
require any roles to perform certain actions.

The Java code for constructing subject and target domains is the same, so
in principle subjects could also be identified by their URIs. This would
allow, for example, particular Grid Services (which are the targets for
normal Grid users) to act as subjects and to make requests to other services
protected by the PERMIS infrastructure. For example, a Grid service could
make a request to an attribute repository protected by the PERMIS ADF, and
PERMIS could decide if the particular Grid Service is allowed to retrieve
certain user Attribute Certificates (specified as targets), thus enforcing a
user’s Privacy Policy.

The question of how to locate the credentials of a subject identified by a
URL in a repository that uses LDAP naming can in fact be solved in at least
two ways. The first and easiest way is to use URLs that conform to RFC
2255 [11]. This specifies how LDAP URLs can be used to retrieve
information from LDAP repositories. An alternative way is to embed the
URL as the latter part of the LDAP Distinguished Name and to configure the
LDAP repository with the prefix DN.

For file-based repositories, e.g. Web-servers or file-servers, it is possible
to construct filenames out of the subject’s identifier, e.g. an MD5 hash of the
normalised subject identifier (either the LDAP DN or URL) can be used to
locate the files containing the necessary credentials®,

The extended SAML Requests designed by the OGSA-Authz group and
specified in [9] may contain Attribute Reference elements. In essence these
are repository URLs from where the subject’s attributes should be retrieved
by the Authorisation Service. This is a “semi-push” or “controlled pull”
model, i.e. the subject doesn’t have to push all the credentials to the
Authorisation Service as SAML evidence, or rely on the Authorisation
Service to pull whichever attributes it wants from where, but instead can
provide a reference to the repositories that contain them. The Authorisation
Service will then pull the attributes from this referenced repository. Note that

"In fact, any URI can be used, but a specific URI handler must be registered with the
PERMIS RBAC at initialisation time.
? For example, this is the way some Public Key Certificates are located on some web-servers.
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where the attributes are stored as digitally signed X.509 ACs, they are
tamperproof and so it is still possible to use such references for making
secure decisions. To cater for this extension to SAML, a new parameter to
the PERMIS getCreds method has been introduced. It provides the PERMIS
Authorisation Service with a list of repositories to contact to get the subject’s
credentials.

To configure the PERMIS Authorisation Service at initialisation time, it
is necessary to specify the URL of the LDAP repository where the policy is
located, the Distinguished Name of the manager issuing the policy, and the
Object Identifier of the actual policy to be used. These parameters are
specified in the GT3 Service Container deployment descriptor.
Unfortunately, there is currently no way to make the deployment descriptor
tamperproof. Therefore to ensure that the Grid service is always correctly
configured, it is recommended that a human security officer should always
be present at the service start-up time, to check that the configuration
parameters that the service uses are the expected ones.

33 Operation Scenario

There are two modes of interaction between GT3 and PERMIS
Authorisation. One mode is remote, the other mode is local. In remote
mode a PERMIS Authorisation Service is set up to serve a number of Grid
Service Containers. In local mode of operation each Grid Service Container
has its own PERMIS Authorisation set up as an Authorisation Handler. In
local mode there are no SAML messages, and authorisation is done via the
PERMIS API, so only a comparison of this mode to the remote mode of
operation is given in section 4. The remote mode of operation is described
below.

When a subject makes a request of a Grid Service, the subject is typically
authenticated by the Grid Service Container using SSL and the user's X.509
certificate (see [8] for details). The subject may also invoke operations
anonymously, in which case a special identifier (*) is used to indicate an
anonymous user. The service container generates a SAML Authorisation
Request, which includes an identifier of the subject, an identifier of the
service (its Grid Service Handle, a URI), and the name of the operation
being invoked. This information is enveloped in a message containing a
timestamp and signature along with other information to protect the message
from tampering and prevent replay attacks. This message is sent to the
trusted Authorisation Service as defined in the service's configuration, e.g. a
PERMIS Authorisation Service.

The Authorization Service parses the request, uses the policy to make an
authorisation decision about the request, and returns a response containing
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the decision (again enveloped in a message which includes a signature and
replay protection). Only an affirmative decision will cause the service
container to allow for the action requested by the user to be executed.

4. DISCUSSION

The implementation described above should help to provide Role-Based
Access Controls in Virtual Organisations built on Grids. Each of the
resource providers will write a PERMIS policy for resource usage, and
authorise collaborative institutions to issue roles to their members. The
collaborative institutions will issue role assignment X.509 Attribute
Certificates to their members, and based on these and the policy, the
PERMIS ADF will make the authorisation decisions.

The implementation is now complete and pilot testing is due to take place
during the next 5 months, so that actual results should be present in time for
the CMS2004 conference.

It is still questionable how efficient it is to have such an authorisation
service called via SAML/SOAP/Http rather than to have a PDP/ADF called
Jocally via a programmable APl. The gain that can be achieved using the
centralised PDP is that in single sign-on distributed systems such as the Grid,
the authorisation tokens (attribute certificates) of the user would have to be
retrieved only once, rather than at each resource of the distributed system. In
most cases this might give a doubtful gain in performance because SAML
messages still have to be generated for each request.

A centralised PDP should make policy management easier — security
managers do not have to change the policy at each PDP. However, the
PERMIS infrastructure has already addressed this problem by storing its
policy as a digitally signed AC in a central LDAP repository, from where all
the distributed systems can retrieve the same policy.

A centralised PDP can provide more user privacy. For example, it is
easier to conceal the user’s identity in a single trusted PDP (and use a
pseudonym throughout the rest of the system), rather than spread this
knowledge across PDPs at each resource site.

A centralised PDP makes implementation of the Principle of Separation of
Duties much easier to enforce — it is easier to track what roles a user has
assumed in the past, so his further requests do not clash (e.g. the Payment
Requestor cannot be a Payment Guarantee for the same order, and an
Accountant cannot be an Auditor for the same transaction). This is much
more difficult to enforce with multiple distributed PDPs.
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Having said all this, it should be noted that most authorisation decision
systems today are local, i.e. no centralised decision-making is done. De-
centralising the decision-making process has its benefits, which are usually
connected with the speed of decision making, and the up-to-date reflection
of the system’s state in the PDP (as contextual parameters).

The Grid environment encourages institutions to collaborate with each
other. The links between these institutions may be established in a fairly
spontaneous way, and these institutions may already have their own
Privilege Management Infrastructures in place. This means that the
participating institutions may have already assigned roles to their members.
It is important in this case that the collaborating institutions are able to
recognise each other’s role assignments and optimally to be able to compare
the roles issued by the different participating institutions. Currently the
PERMIS policy has to be configured with all the different roles, and
permissions assigned to each. In the future we expect to be able to express
role mappings, and one of our ongoing projects aims to facilitate dynamic
cross-institutional virtual organisations using existing PMIs.
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Abstract This paper describes a secure role based messaging system design based on the
use of X.509 Attribute Certificates for holding user roles. Access to the mes-
sages is authorised by the PERMIS Privilege Management Infrastructure, a pol-
icy driven role based access control (RBAC) infrastructure, which allows the
assignment of roles to be distributed between trusted issuing authorities, and
allows a change of access control policy at runtime. Messages can be sent by
roles and users, and can be sent to roles and users. Messages are secure in their
exchange between senders and recipients. Details of the security and messaging
design are presented.
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1. Introduction

Messaging systems like email systems are widely used to enable commu-
nication between people. In the setting of organizations, a message is sent to
a person with the assumption that the receiver is the person who is responsi-
ble for dealing with the message’s contents. To some degree, it requires that
senders know about the identities of people corresponding to specific duties
and issues, and that they can always get up-to-date information on the relation-
ships between issues, duties and the people who are responsible for them.

From a business’s point of view, the destination of these messages is organ-
isational roles instead of the physical occupants of roles. A role is an abstract
model in an organization, which specifies a set of duties and tasks and can be
associated with a set of people in the organization. People are related to the
duties and tasks by being assigned as an occupant of the corresponding role.
Role assignment is dynamic, and should be instantaneous, especially when a
role is being removed from a currently role occupant.

Security is required when the information being carried by a message is im-
portant and/or confidential. Message security means various things including:
confidential messages can be accessed only by authorised entities, including



264 David Chadwick, Graeme Lunt, and Gansen Zhao

roles and users; message contents have integrity and are protected from be-
ing modified during the course of their transportation; recipients cannot falsely
deny having received messages that have been delivered; and the identity of
message senders can be verified at any time after the messages have been sent.

Most existing messaging systems provide only person to person messaging
and lack the ability to send messages to and from dynamically changing role
occupants.

The purpose of the current research at Salford is to design, build and test a
secure role based messaging system that can provide for the secure exchange
of messages between organisational roles. This paper describes such a design
based on the use of: X.509 attribute certificates [9] for holding user roles, PER-
MIS [1], a role based access control (RBAC) [4, 5] infrastructure, and user and
role public/private key pairs. Access to both user mailboxes and role mailboxes
is authorised by the PERMIS Privilege Management Infrastructure (PMI), an
XML policy driven RBAC infrastructure, which allows the assignment of roles
to be distributed between trusted issuing authorities. The design is achieved in
a way that has the least impact on existing systems and standards.

The rest of this paper is structured as follows. We present the system re-
quirements for secure role based messaging systems and the current challenges
in Section 2, and propose a system design for secure role based messaging sys-
tems in Section 3. The details of secure messaging are elaborated in Section 4.
We conclude with a review of the related work in Section 5 and conclusions of
the system design in Section 6.

2. Requirements and Challenges

This section presents the system requirements and challenges for secure role
based messaging systems.

2.1 System Requirements

A secure role based messaging system should have all the following prop-
erties:

m Privacy and confidentiality. Messages are delivered in an encrypted man-
ner, and are accessed by only authenticated users and roles through au-
thorised operations.

» Integrity and authenticity. Senders can sign messages, which enable re-
cipients to verify the sender identity. Messages will not be modified
during the course of their delivery.

= Time sensitivity. Role occupants are able to access the role mailbox only
during the time that they officially hold the role
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»  Accountability. It should be possible to determine who acted in any
specific role at any particular time.

= Scalability. The system should support multiple role occupants both con-
currently and consecutively e.g. any current role occupant should be able
to access and respond to any of the messages in the in-tray, and read all
the responses sent by all the other role occupants in the out-tray.

m  Manageability. Managers should be able to dynamically allocate and
remove roles from people and they should then immediately be able to
access role mailboxes (or not) without having to reconfigure the system

» Distributed management of roles. Different managers in different organ-
isational units should be able to allocate and remove roles from people
under their control.

a  Policy based access control. Authorisation can be represented by poli-
cies, which can be set or modified to specify who is trusted to allocate
which roles to which users, and which access rights are given to which
roles.

s User friendliness. User friendliness is required for both use and man-
agement. It should be simple for users to access messages whilst acting
in the capacity of a role. In the case that users hold a number of roles, it
should also be simple to select which role users wish to exercise at any
particular time. It must also be easy for managers to allocate and remove
roles, and for the security officer to set the policy controlling access to
the role based messaging system.

2.2 Challenges in Secure Role Based Messaging

There is significant interest in role based messaging. Such a system presents
a number of challenges, especially when encryption and digital signing are
involved, since keys need to be assigned to a role, even though the role could
be occupied by zero, one or several real people at any given time.

Within a large and structured organisation, people often want to send a mes-
sage to a given role within that organisation, rather than to a specific individual.
Unfortunately most email systems are person to person and do not inherently
support roles. The gap between existing messaging systems and applications
is exaggerated in large organisations, which have complex organization struc-
tures and people continually adopt different roles during their professional life.

Two of the current ways of supporting role based messaging are using ded-
icated role mailboxes and using distribution lists. When using dedicated role
mailboxes, role occupants share a role mailbox by sharing the role password
or role private key to access the role mailbox. Sharing passwords brings a risk
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of password disclosure, and the risk will increase when the number of role
occupants increases or the change of role occupants becomes frequent. Fur-
thermore, it is difficult to stop someone from accessing a role mailbox after the
role has been removed from him or her without changing the role password.
Sharing role private keys is a better option if the keys are held in hardware to-
kens. The tokens can then be physically removed from the role occupant when
the role is removed. But if the role private key is held in an encrypted file it is
little better than sharing a role password, since the file can be copied at will.

When distribution lists are used, messages sent to a role are copied to each
role occupant. One of the drawbacks of this mode is that it does not cater for the
temporal nature of role occupancy without significant management overhead.
Removed role occupants will continue to have access to the messages that were
delivered to the role prior to their removal, while new added role occupants will
not be able to access those messages that were delivered to the role before their
role assignment was made.

The issue is further complicated when secure messaging is required. Mes-
sages sent by a role need to be signed by a role, whilst encrypted messages re-
ceived by a role need to be read by all role occupants. Role occupants could be
given copies of the role private key(s), but the management overhead of these
keys, both by the individual and by the administrator would be prohibitive.

Enhancing the distribution list expansion method to re-encrypt the message
for each individual role occupant does not allow new role occupants to access
the messages that have already been delivered, nor does it cater for role occu-
pants whose role assignments are revoked after messages have been sent but
not read and acted upon.

3. System Design

The work reported in this paper is an attempt to develop a framework for
secure role based messaging, which is flexible enough to cater for different
security and messaging requirements whilst having the least impact on existing
systems and standards.

3.1 System Architecture

Figure 1 shows an architecture design for a secure role based messaging
system. The main components of the architecture are the Message User Agent
(MUA), the Message Transfer Agent (MTA), the Internet Mail Access Proto-
col 4 Server (IMAP4 server), and the Role Gatekeeper. The MUA is a com-
ponent that provides users with facilities for sending and receiving messages.
It mediates the communication between users and other components, and the
communication between roles and other components. The MTA component
is responsible for transporting messages. It receives messages from MUASs or
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remote MTAs, and delivers messages to a remote MTA or stores them locally
according to the destination of the messages. The IMAP4 server provides an
interface to access electronic messages that are stored in the system. Users and
roles use MUASs to retrieve messages from the IMAP4 server. Messages are
transmitted between MUAs and MTAs over the SMTP protocol [10], and are
transmitted between MUAs and IMAP4 servers over the IMAP [2] protocol.
The Role Gatekeeper intercepts messages between the MUA and the MTA
server, and communications between the MUA and IMAP4 server. The com-
munications between the Role Gatekeeper and the other components are secure
by means of authentication and encryption of messages or links. The Role
Gatekeeper is responsible for all security operations regarding roles.

Mail System

Figure 1. The Secure Role based Messaging System Architecture

3.2 The Role Gatekeeper

Details of the Role Gatekeeper design are shown in Figure 2. The Key com-
ponents in the Role Gatekeeper include the authentication service component,
the encryption and decryption service component, and the PERMIS authori-
sation service component. The authentication service component verifies the
identities of message senders, and the identities of users and roles who are
requesting to perform actions within the messaging system.

The encryption and decryption service component signs (and encrypts) role
messages if necessary when they are being sent, and decrypts encrypted role
messages when they are being retrieved. The encryption and decryption ser-
vice component has access to the role private keys, so it can sign role messages
on behalf of a role by using the role’s private key. The encryption and decryp-
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tion service component eliminates the requirement of role occupants to hold
role private keys for signing and decrypting role messages.

The PERMIS authorisation service component authorises all security sensi-
tive operations within the system, ensuring that only permitted operations on
messages are conducted in regard to the identity of users and roles. The PER-
MIS access control decision function (ADF) can reason and decide whether
an operation of a user or a role is permitted or not, in regard to a specific re-
source, which are mailboxes in the case of this work. PERMIS also supports
the distributed management of roles.

o
e

7 .
{ Role Pr:vate\J
Message to be Key Server
Role Gatekeeper secured ;//

e

Secured

@ =port 587
o =port 143 —
Access
MUA Request : : Mail Systen
+ Role AC ¢ s, ]

I'JDAP /R/ e‘tr
Directory

Figure 2.  Role Gatekeeper

33 Private Keys and Pubic Keys

The proposed design assumes that each role and user is allocated his or her
own public/private key pair(s). One key pair is used for digitally signing mes-
sages, named signature keys, the other for encrypting/decrypting messages,
named encryption keys. The user private keys are held in a smart card, en-
crypted file or similar that is only accessible to them, while the role private
keys are held in a role private key server. Users can access their own private
keys, but role occupants have no access to the role private keys. The Role
Gatekeeper will access the role private keys on behalf of role occupants when
it is necessary to use the role private keys to sign or to decrypt messages. Both
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the public keys of users and roles are held as X.509 public key certificates [9]
in an LDAP directory [18].

34 Attribute Certificates

An Attribute Certificate (AC) is a data structure which contains a set of
attributes for an entity, and it is required to be signed by an attribute authority
(AA), which is an authority trusted by the system or the user [16]. A Role
Assignment Attribute Certificate (RAC) specifies a user’s assignment of a role.
Role occupancy is conferred upon a user by being in possession of an X.509
RAC. Given a RAC and a trusted root AA, called the Source of Authority
(SOA) in X.509, it can be verified whether the RAC is issued by a trusted
AA or not, and it can also be determined whether a user is assigned to a role.
A Role Specification Attribute Certificate [9] or Policy Attribute Certificate
(PAC) [16] specifies the authorised operations of a role on a specific resource.
In PERMIS, for efficiency reasons, all the PACs are collected together into one
PERMIS authorisation Policy Attribute Certificate. A user acting in a trusted
role will be authorised to perform a specific operation on a specific resource if
the PERMIS policy specifies that the role is allowed to perform the operation
on the resource.

4. Secure Messaging

The system framework described in Section 3 works by authenticating users
and their roles and authorising their operations, i.e. sending, delivering and
accessing messages.

4.1 Authentication and Authorisation

The authentication service component within the Role Gatekeeper is respon-
sible for authenticating both the identity of a user and the identity of a role.
Users hold their private keys by themselves, and make them available for the
MUA. The MUA can then use the private keys to achieve authentication with
the Role Gatekeeper. One of the possible ways is that the Role Gatekeeper
requires the MUA to sign a specific message, and verifies the signature on the
message. The general submission mechanism is specified in [7].

Role occupants do not have access to role private keys, thus they have no
way to prove their role identity by directly using role private keys. In the
proposed design, a user gains its authentication as a role occupant by getting
its own authentication and then proving its assignment of a role through a valid
X.509 RAC. In this way, when a user wants to login in as a role, he/she will
first login into the system as a user as above, and then present a RAC to the
system, which specifies that the user has been assigned to the role.
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The PERMIS component of the Role Gatekeeper authorises operations of
both users and roles. RACs and the PERMIS PAC are the most important
security tokens for the PERMIS authorisation service component to authorise a
user’s and role occupant’s operations. The authorisation requires a user or role
occupant to present one or more RACs, which can show that they are allowed to
perform the specific operations. Given the identity, the requested operation and
the related RACs, the PERMIS Access Control Decision Function (ADF) can
reason and decide whether the request of performing the operation is allowed
or not, in regard to the target mailbox.

PERMIS can operate in either push or pull mode. In push mode, the user
pushes their RACs to the Role Gatekeeper to present to PERMIS. In pull mode,
the PERMIS component fetches the user’s RACs from one or more configured
LDAP directories.

The way the system works can best be described by considering in detail
each of the following three scenarios:

®  a user sends a secured message to a role
m arole sends a secured message to a user

m arole sends a secured message to a role

4.2 User to Role

A user (MUA in the figures) wishes to send a secured message (digitally
signed and/or encrypted) to a role. In normal email systems, when encrypt-
ing a message, the user would first obtain the encryption public key of the
role/recipient from the LDAP directory and also obtain the latest revocation in-
formation for the role/recipient certificate (e.g. Certificate Revocation List(CRL)
from the LDAP directory or OCSP [14] response from OSCP responder) to
ensure that the certificate has not been revoked. The user would then digitally
sign and/or encrypt the message, and send it to the SMTP server. The order
of signing and encrypting would typically be determined by the MUA soft-
ware, unless it was configurable by the user. ESS triple wrapping [17, 8] states
the order should be Sign/Encrypt/Sign. A signature over the clear content, as
opposed to encrypted content, has much more value.

In our design, because users do not have access to role private keys, the order
of securing messages is important. Digital signing must come first. Signing
followed by encrypting allows the Role Gatekeeper to subsequently decrypt
and then re-encrypt the message to role keys without invalidating the signature
of the sender; otherwise the signature will be invalidated when the message is
decrypted. Thus the actual order of events is as follows.

The user creates a message to a role recipient and selects the sign and/or
recipient role encrypt features. If sign was selected the MUA signs the message
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using the user’s private signing key. The message is then transferred to the
message submission port (587) on the Role Gatekeeper along with the optional
recipient role encryption flag. The Role Gatekeeper, upon seeing the recipient
role encryption flag, encrypts the message to the recipient role, using the role’s
public key obtained from the LDAP directory. (Revocation checking is also
always, carried out, but we will take this as a given and not mention it again).
The S/MIME double wrapped message [6, 17, 8] (signed by user, encrypted to
role) is then submitted to the SMTP server by the Role Gatekeeper.

We note that the encryption could have been done at the MUA as the recip-
ient role’s public key is in the directory and the originating role private key is
not used in the encryption process. However, to maintain consistency with the
other scenarios, we propose to always perform recipient role encryption in the
Role Gatekeeper.

We further note that the link between the MUA and Role Gatekeeper may
be encrypted or not to preserve message confidentiality. The security of this
link is independent of the encryption of the message to the recipient role. If the
link is encrypted this will have been negotiated at session establishment, using
for example an SSL/TLS link.

The SMTP system distributes the mail until it eventually ends up in the role
mailbox of an IMAP4 server. The secured message sits in the role mailbox
of the IMAP4 server until a current role occupant logs in. A role occupant
(user) authenticates to port 143 of the Role Gatekeeper and uses SASL [13]
to identify themselves. The user then requests to access a particular mailbox
using standard IMAP commands. The Role Gatekeeper determines if the user
has access to the requested mailbox by determining if the user has an appro-
priate X.509 RAC. If no RAC is presented, the user’s request is passed straight
through to the mail server and he/she is only granted access to the default mail-
box of their own username (INBOX in IMAP4). Such exchanges are no longer
considered by this paper

If a RAC is presented, PERMIS authorises the operations according to the
RAC and the related PERMIS policy. If PERMIS grants access, the Role Gate-
keeper will log into the role mailbox on behalf of the user, using the role mail-
box password that it holds. (Note that users do not know the passwords to the
role mailboxes). When the user sends request messages to access the folders
within the mailbox e.g. via the IMAP SELECT command, then the embedded
folders and mail headers are returned to be displayed on the user’s terminal.
When the user wishes to fetch the contents of an encrypted message (e.g. via
the IMAP FETCH command), then the Role Gatekeeper extracts the encrypted
key information, sends it to the key server, and then attaches the response to
the message before returning it to the user.

The encrypted key information E{Km}py, contains the symmetric key
used to encrypt the message, Km, encrypted with the public key of the re-
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cipient role, Pkr. The key server, which has the private keys of all the roles, is
able to decrypt the encrypted key information using the role private key of the
role encryption key pair, Prr. It then re-encrypts the symmetric key, Km, using
the user’s public encryption key, Pku, which it can obtain from the LDAP di-
rectory. Note that we are currently working on the design of a policy controlled
email system, which will allow some role occupants not to have access to some
policy labelled messages, but description of this feature is out of the scope of
this paper.

When the role occupant receives the encrypted message, (s)he is able to
decrypt the message using their own private decryption key, and then validate
the signature of the sender.

4.3 Role to User

A user logs into the IMAP4 server as before, by sending their RAC to the
Role Gatekeeper. The Role Gatekeeper checks the validity of the RAC and if
OK, allows the role occupant (the user) to download the contents of the role
mailbox. The role occupant may now either reply to a message in the inbox,
or create a new message to someone, acting in their official role. Once the
message has been created, the role occupant selects the sign, role sign and/or
encrypt functions, and if sign is selected, the MUA digitally signs the message
using the role occupant’s own personal private key of the signature key pair.
This functionality provides a complete audit trail of which role occupant ac-
tually acted in the role at the time the message was signed. The MUA sends
the message to the SMTP server via the Role Gatekeeper along with indicators
specifying whether the message requires role signature and/or encryption. If
this is a new connection between the MUA and the SMTP server (actually to
port 587 on the Role Gatekeeper), then the user’s RAC is transferred during
the connection establishment phase. The Role Gatekeeper validates the RAC
of the role occupant (once per session) and if the message is flagged to be role
signed, it is sent to the key server for digital signing using the private key of
the role signature key pair. If the message is also flagged to be encrypted,
then it is encrypted to the recipient’s public encryption key by the Role Gate-
keeper. Finally it is submitted to the SMTP server. The resulting message may
be S/MIME tripled wrapped (signed by sender, signed by role, encrypted to
recipient).

When the user downloads the message from the IMAP4 server (in this case
the Role Gatekeeper does not interfere with the message exchanges) the user is
able to decrypt the message using the private key of their encryption key pair,
then validate the signatures of the sender. (We assume here that the MUA is ca-
pable of downloading certificates and CRLs from an appropriately configured
LDAP directory, and is capable of deciphering doubly signed messages).
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In an alternative design that we are also building, the user includes his RAC
in the message before signing the message. This binds the user to the role they
are signing on behalf of. The advantage of this design is that the message is
only doubly wrapped as a maximum (signed by sender and encrypted to recip-
ient) instead of triply wrapped. Further, message encryption can be done by
the MUA which relieves the burden on the Role Gatekeeper. The disadvantage
is that the message is not actually signed by the sending role, and the recipient
has to view the attached RAC to see that it was sent by a role.

4.4 Role to Role

This scenario is obviously a combination of the previous two scenarios. A
role occupant logs into the IMAP4 server via the Role Gatekeeper, by passing
a RAC at authentication time. If the role is valid, the Role Gatekeeper allows
the role occupant to download the contents of the role mailbox. Any encrypted
messages are passed by the Role Gatekeeper to the key server so that the sym-
metric encryption key can be encrypted to the public key of the role occupant’s
encryption key pair. The role occupant is thus able to read all messages that
were encrypted to the public key of the role encryption key pair.

Any messages that the role occupant submits to the SMTP server via the
Role Gatekeeper are firstly passed to the key server for digitally signing by the
private key of the role signature key pair, and then they are encrypted to the
public key of the recipient role’s encryption key pair, resulting in an S/MIME
triply wrapped message (or alternatively the sender includes his RAC in the
message, signs the message and then encrypts it for the recipient role).

s. Related Work

Mont et al [12] describe a role based secure messaging service used in a
health care setting. The service employs Identifier Based Encryption to protect
messages. Senders decide the permitted role(s) who can view the message, and
the messages will be encrypted with a string describing the permitted role(s).
A recipient has to be authenticated as a member of at least one of the selected
roles by the trust authority before getting a decryption key for the message.
This work requires all users to be assigned a role before they can interact with
the system, which is not practical to some degree.

Microsoft [11] released Microsoft Windows Server 2003 with a Rights Man-
agement System (RMS) that enables enterprises to add security information
to files produced using Microsoft Office 2003 applications. The added secu-
rity allows an author to limit the circulation and operations of a document. A
header containing the security control policy is added to the file. The system
also provides facilities for administrators to generate templates to define ac-
cess control policies. One of the drawbacks is that RMS is provided without a
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mechanism to specify access control policies for groups and roles. Some may
argue that Microsoft Active Directory can be integrated with the system and
provide mechanism for controlling group permissions. For users external to
the enterprise, Microsoft mandates the use of the Passport authentication ser-
vice, which is a service provided by Microsoft, to allow these users to produce
licenses for their files. However, it is not yet clear how the interface between
external users and the enterprise is managed and there is no provision for bind-
ing users to roles.

MailRecall”™ is produced by Authentica [3]. It provides plug-ins for sev-
eral popular email clients with the ability of keeping e-mail’s privacy and pro-
tecting emails from unauthorised users, even after delivery. MailRecall”™
uses content security policies to determine the expiration of messages and au-
thorize operations on emails. These policies can be configured individually
by users or centrally, in accordance with corporate policy. When a message is
sent outside the organisation the external recipient can be automatically regis-
tered and a browser plug-in is downloaded when the message is opened. The
plug-in allows the recipient to view the protected message. Furthermore the
web viewer can be configured to prompt the recipient to install the email client
plug-in. Although MailRecall”™ provides several security control features, it
fails to provide facilities to define a security policy at the group level or from a
role’s perspective.

The Omniva Policy Manager package [15] offers functions that are similar
to MailRecall™ | and it is available as a plug-in for Microsoft Outlook. It
does provide a means of applying policies to groups of users, using existing
directories and external recipients can read, but not directly respond to mes-
sages, using a web browser. However, no provision is made for addressing
mail to role mailboxes.

6. Conclusions

This work presents a design for a secure role based messaging system, which
is based on X.509 role assignment attribute certificates and the PERMIS policy
driven role based authorization system. The proposed design has been devel-
oped with the effort of making the least number of modifications to the existing
Email systems and protocol standards. The assumption is that such a design
will facilitate its deployment within enterprises.

We have two variations on the design for sending digitally signed role based
messages. We are currently building both systems and will report on the im-
plementation, performance and usability in due course.
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Abstract: Securing information is vital for the survival of many organizations.
Therefore, information must be proactively secured against harmful attacks.
This securing of information becomes more complex when such information is
transmitted over networks. This paper identifies five non-technical pillars
(essentials) for network security management. For each pillar a number of
specific actions are specified, resulting in a check list for a high level
evaluation of the security status of these 5 pillars in a networked environment.

Key words:  Information security; network security; non-technical aspects; information
security management.

1. INTRODUCTION

In an increasingly competitive world, the company with the best
information on which to base management decisions is the most likely to
win and prosper [4]. Organizations must understand that information is a
very valuable resource and must be protected and managed accordingly.
Security must be considered as an integral part of whole IT governance
environment, and must be dealt with in a proactive manner in order to be
effective. .

This means that information security is fundamental to the survival of
any organization which uses electronic information resources. Information
security is a discipline which can be divided into technical and non-technical
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aspects. This division is also reflected in the following definition of
Information Security Governance [17]:

‘Information  Security Governance consists of the leadership,
organizational structures, policies, procedures, compliance enforcement
mechanisms and technologies needed to ensure that the confidentiality,
integrity and availability of the organization’s electronic information assets
are maintained at all times.’

Aspects like the leadership, organizational structures, policies,
procedures and some of the compliance enforcement mechanisms can be
seen as the non-technical aspects, while the specific technologies (firewalls,
encryption, access control lists etc) can be seen as the technical aspects. The
authors do agree that some of these aspects overlap, and therefore fall into
the grey area of being technical as well as non-technical. Nevertheless, the
major aspects can be categorized as technical or non-technical.

Real Information Security Governance therefore consists of ensuring that
both these technical as well as the non-technical aspects are implemented
and coordinated in a holistic way. Figure 1 below indicates where
Information Security Governance fits into the wider Corporate Governance
structure.

Corporate Governance

Financial . Information Etc.
Governance Technology Governance
— ]
| | . |
Performance and - Information Security Etc.
Capacity Governance . Governance ‘

Figure 1. Corporate Governance Structure

Over the last 10 to 15 years, Information Technology in general has
evolved from a centralized environment to a more decentralized
environment, in which all types of networks (LANs, WANSs, and Internet)
are used daily to connect systems, work stations etc. to each other.

Managing the security of these networks, i.e. ensuring that the existence
and use of all types of networks, do not impact on the confidentiality,
integrity and availability of the organization’s electronic assets, has become
a pivotal part of more general information security governance. The more
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recent security worries around wireless networks, emphasize the crucial
importance of such network security management. Figure 2 below indicates
where network security management fits into the Information Security
Governance structure.

Information Security Governance

Physical Personnel
Security Security Etc.
Management Management

Figure 2. Network Security Management within the Information Security Governance
structure

Because of the pivotal role of network security management, this paper
zooms into this specific part of Information Security Governance, and
defines 5 pillars (essentials) which must be in place to ensure proper network
security management. These 5 pillars have to do with the more non-technical
aspects of network security management, in line with the division made for
Information Security Governance above.

Understanding the importance of these 5 pillars are vital to network
security, as too often companies approach network security from a purely
technical viewpoint, and do not realize that if the non-technical aspects
(pillars) are not in place, huge risks will still exist as far as the use of their
networks are concerned. Identifying and highlighting the importance of these
5 pillars are not necessarily a novel idea, as they are discussed and
mentioned in most internationally accepted best practices for information
and network security management. However, the purpose is to again stress
their importance, and to provide a simple way for a network security
manager to do a fast high level evaluation to determine the presence and
level of implementation of these 5 pillars.

We start off by introducing and discussing each of these 5 (non-
technical) pillars, and finish with a checklist that a network security manager
can use to see whether the relevant 5 (non-technical) pillars are in place,
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2. NETWORK SECURITY MANAGEMENT
PILLARS

The five main pillars (building blocks) that the authors claim to be
essential for network security management can be defined as:
e Having Top Management’s commitment and buy-in for network security
Having a proper Network Security Policy
Having a proper Organizational structure for network security
Having a proper User awareness program for network security
Having a proper Compliance monitoring system for network security
Combined these five pillars will have a significant positive effect on
implementing and maintaining a good network security management
program.

Each of these five pillars will now be discussed briefly.

2.1 Having Top Management’s commitment and buy-in
for network security

In the last decade, boards of directors have experienced many new
challenges and demands (such as rapid developments in technology and
market conditions) [6]. The document referred to, goes on to state that
information possessed by an organization is among its most valuable assets
and is critical to its success. The board of directors, which is ultimately
accountable for the organization’s success, is therefore responsible for the
protection of its information. The protection of this information can only be
achieved through effective management and corporate governance.

According to Nicholas Durlacher [10], senior executives do not have to
take responsibility for all the actions of their employees. However,
organizations have the right to require senior executives to justify their
conduct and competence formally in the event of any serious management
failure that threatens the future of the firm. It is clear that senior managers in
many large organizations are now expressing a much greater interest in
Information Security than their counterparts of five to ten years ago.

Another author who has addressed the importance of senior management
is Lewis [11]. Lewis states that the business should take responsibility for
Information Security and appoint an officer whose key responsibility is the
integrity of the organization’s information. Given that the directors of the
company are ultimately liable for business continuity, it is clear that the
responsibility for Information Security cannot be removed from the
boardroom.

This clearly shows that it is vital to involve top management in all
Information Security management procedures and decisions within the
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organization. The reason being, that they are ultimately responsible for the
security of all information in the organization. Because of the increased risks
in using networks, Top Management must specifically be aware of the
increased risk exposure of the company by using such networks, based on
the underlying risks of the Internet, remote dial-ins, wireless networks etc.
Without such commitment and buy-in, proper corporate governance will be
affected.

2.2 Having a proper Network Security Policy

A Corporate Information security policy may be defined as “compiled
documentation of computer security decisions”[15]. These security decisions
can be made with regard to hardware, software, networks and information.
Such a Corporate Information Security policy must be a maximum of 2 to 3
pages, very generic, and non-technical, and must be signed by the most
senior official in the company.

Because of the pivotal role of networks in most companies, and the
increased risks arising from implementing and using such networks, a
separate Network Security Policy, flowing from the Corporate Information
Security policy, must exist. Such a policy must explain the reason why the
company uses networks, the risks involved in using these networks, and the
responsibilities of employees in limiting these risks whenever using such
networks.

This can be a single policy document, but because of the growing
importance and risks related to network usage, trying to cover all aspects
related to network security in one document, results in a document which is
too big and unwieldy. Increasingly companies are creating a set of policies
related to network security, including:

An Internet Usage Security Policy

An Email Usage Security Policy

An Encryption Policy

A Wireless Network Security Policy

A Malicious Software Security Policy

Etc.

Such a Network Security Policy, or rather set of Network Security
Policies, highlights the importance of security when using networks and
makes it easier to enforce proper network security management.

e ® & o o o
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According to the International Guidelines for Managing Risk of
Information and Communications Statement #1 [8], one of the six major
activities involved in Information Security is Roles and Responsibilities.
This includes ensuring that individual roles, responsibilities and authority are
clearly communicated and understood by all [7]. Therefore, all security
responsibilities, roles and ownership must be defined and assigned to all the
users in the organization who work with any information resource.

Again, because of the increased use of networks, a clear organizational
structure, with a supporting set of roles and responsibilities must exist for
network usage in all its forms. This structure must clearly indicate which
organizational positions in the company can use which network services, for
example, remote login from wired and wireless networks, home access, dial-
in modems etc., and what their roles and responsibilities are.

2.4 Awareness

Information Security awareness is a widely publicized and talked-about
issue in the business environment. The reason for this is that Information
Security awareness is mainly a human-related issue. It is important to realize
that “human issues” are the main cause of security breaches [11]. The most
effective way to reduce Information Security risks in an organization is to
make employees more Information Security aware. This awareness also
means that employees must take responsibility for their own actions in the
workplace.

Implementing an effective Information Security awareness programme
helps all employees understand why they need to take Information Security
seriously, what they will gain from its implementation and how it will assist
them in completing their assigned tasks. An effective Information Security
awareness programme could be the most cost-effective initiative a company
can take to protect its critical information assets [16]. This protection can
only be provided if there are effective programmes in place to make certain
that employees are aware of their responsibilities.

It is the organization’s responsibility to make employees aware of
Information Security policies and issues in the organization. Without
knowing the necessary security controls (and how to use them), users cannot
be truly accountable for their actions [15]. Organizations that have
implemented strong protection mechanisms and have educated their staff are
in the best position to protect their information from unauthorized disclosure
or modification.
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According to the CCTA [2], the Information Security procedures must be
integrated into normal everyday routine, and staff should come to recognize
security as an enabler rather than a barrier. The NIST handbook [15] also
stresses this “every day routine” by stating that Information Security is an
ongoing process. This process of making employees Information Security
aware must continue after a candidate has been hired, which includes
keeping employees up to date with their IS duties and responsibilities.

Any general Information Security awareness program must, of course,
include all aspects related to network usage security, which must not be
hidden amongst a lot of other security issues. Again, because of the
importance of networks, many companies are realizing that a network
security awareness program, separate from the general Information Security
awareness program, has significant value. This is enforce by Lewis [14] that
states if one can make employees aware of the threats to the network and let
them feel part of the network security team they may feel more inclined to
help out and point out potential problems before they get out of hand.
Greater success is achieved in this way, because employees are specifically
exposed to the security risks related to the use of networks, and can therefore
evaluate network security as an aspect in its own right.

2.5 Compliance Monitor (CM)

Compliance monitoring (measuring) is about finding out if procedures
and processes that should be implemented in an organization are working as
they should, and are being complied with. The objects that are monitored can
differ from organization to organization; and include products, systems,
processes, security program effectiveness and personal competence [9].

Network security in itself can be compromised if there are no
mechanisms in place, apart from some annual audits, to ensure that it is
enforced and complied with on a continuous basis. GMITS [5] states that
Information Security compliance checking (which includes network
security) has to occur on an annual basis. A setback with annual audits is
that Information Security problems are only identified annually and the
organization is open to security attacks daily. In today’s business
environment, organizations cannot afford to find out, 6 to 12 months later,
that an employee has resigned from the organization but still has access to
some of the servers. These problems can be avoided by continuously
monitoring the network security in the organization.

A comprehensive compliance monitoring environment, to ensure
compliance to the policies and procedures mentioned in 2.2 above, is
therefore essential. Although many of these compliance measuring and
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monitoring mechanisms will be technical, the results must be used to check
compliance to policies, and to update aspects like the awareness programs.
Therefore this pillar is handled as one of the non-technical pillars, as
discussed in section 1.

The compliance measuring and monitoring must not only produce
technical low level results for operational purposes, but must also be able to
produce high level reports which can be used to inform top management, in
an easily understandable way, about the risks related to the use of networks
in the company.

Such compliance monitoring is essential, because ‘you can only manage
something if you can measure it’. This specifically holds true for computer
networks.

3. THE ‘S PILLARED’ APPROACH

3.1 Network security management Processes

‘In the first part of this paper the 5 pillars for network security
management were briefly introduced. Each of these pillars can be
summarized into a few high level actions that will enforce the role of that
pillar.

This section will use an incremental approach to illustrate how these
actions can be used to implement (or evaluate the presence of) these pillars
in a network security management environment.

Each of these pillars contains one ore more actions that is vital to that
pillar. If there is compliance with an action one can move on to the next
action. If compliance with one action within a pillar is not complied with, a
counter action must be taken (indicated as a “No” in Figure 3). After a
counter action is completed, the process starts again at the first action in the
specified pillar (or block). If all the actions are complied with within the
pillar, one can progress to the next pillar (block).

The order in which the pillars will be addressed is the same order as
introduced in section 2. The order of the pillars is very important to follow,
for example one cannot monitor a policy or procedures if such a policy or
procedure does not exist in the first place. Therefore, the pillars must be kept
in the correct order. The action and counter actions for each pillar can be
depicted in Figure 3.
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3.2 Checklist

This section uses the actions and pillars depicted in Figure 3 to create a
checklist for network security management. This checklist comprises each of
the 13 decision questions from figure 3, and indicates the network security
management approach for non-technical network aspects. Before starting to
work through the checklist it is important to know that technical aspects such
as firewalls protect an organization for outside attacks but leave the
organization open to attacks from inside the organization. Insider threats are
most often incidental in nature due to the fact that many employees do not
know that they are compromising the confidentially, integrity or availability
of information. With this check list in place an organization can try to
minimize the “incidental” threats by employees.

4. CONCLUSION

This paper introduced the importance of the non-technical aspects of
network security management. Five vital pillars were identified and briefly
described. Different actions for each of these pillars were also identified.
These five pillars, together with the individual actions can be depicted in a
checklist with a preset order that must be followed. The importance of this
checklist is to ensure that organizations are aware of the different non-
technical aspects related to network security management and how to
implement and monitor these in an organization.
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